Cyclometalated Iridium(III) N-Heterocyclic Carbene Complexes as **Potential Mitochondrial Anticancer and Photodynamic Agents**

Yi Li, ^{a,b} Bing Liu, ^a Xin-Ran Lu, ^a Meng-Feng Li, ^{b,*} Liang-Nian Ji ^a and Zong-Wan Mao a,*

^a MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China. E-mail: cesmzw@mail.sysu.edu.cn.

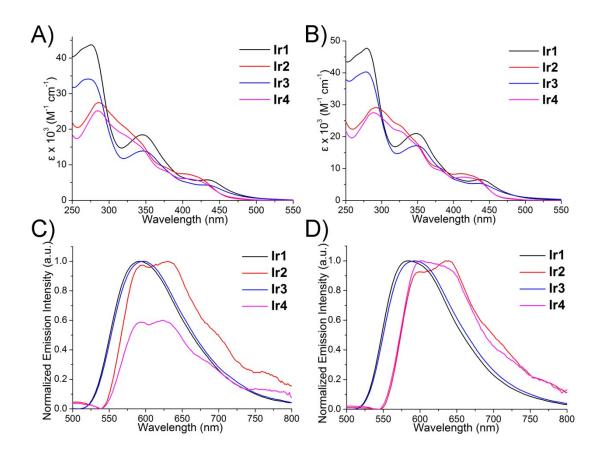
^b Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P. R. China. E-mail: limf@mail.sysu.edu.cn

Table of Contents							
Table S1 The lipophilicity and cellular uptake efficiency of complexes Ir1-Ir4							
82							
Table S2 IC ₅₀ values of the tested complexes towards different cell lines							
S2							
Figure S1 UV/Vis spectra and normalized emission spectra of Ir1-Ir4							
Figure S2 Confocal images of A549 cells with Ir1 under different conditions							
Figure S3 Colocalization images of Ir1–Ir4 with lysosome dye							
Figure S4 Impact of complexes Ir1-Ir4 on MMP							
S6							
Figure S5 Activation of caspases-3/7 by Ir(III) treatment							
Figure S6 ESI-MS spectrum of complexes Ir1							
Figure S7 ESI-MS spectrum of complexes Ir2							
Figure S8 ESI-MS spectrum of complexes Ir3							
Figure S9 ESI-MS spectrum of complexes Ir4							
Figure S10 ¹ H NMR spectrum of complexes Ir1							
Figure S11 ¹ H NMR spectrum of complexes Ir2							
Figure S12 ¹ H NMR spectrum of complexes Ir3							

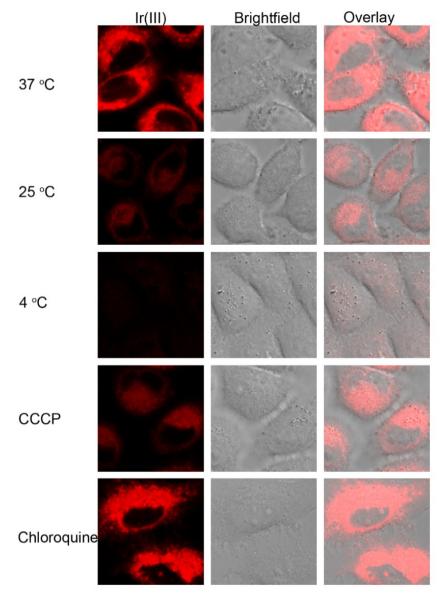
Compounds	Lipophilicity (log $P_{o/w}$)	Amount of iridium (nmol per cell) ^a			
Ir1	0.94	0.63 ± 0.084			
Ir2	0.77	0.49 ± 0.054			
Ir3	1.14	0.82 ± 0.13			
Ir4	0.82	0.56 ± 0.066			

Table S1 The lipophilicity and cellular uptake efficiency of complexes Ir1-Ir4.

^aData are presented as means \pm standard deviation obtained in at least three independent experiments.


Table S2 IC_{50} (μ M) values of the tested complexes towards HeLa, U87 and LO2 cell lines at dark and 450 nm.

Compounds	HeLa			U87			LO2		
Compounds .	Dark ^a	Light ^b	PI °	Dark ^a	Light ^b	PI °	Dark ^a	Light ^b	PI °
Ir1	1.3 ± 0.1	0.069 ± 0.013	19	1.6 ± 0.3	0.029 ± 0.008	55	1.2 ± 0.1	0.10 ± 0.03	12
Ir2	1.0 ± 0.1	0.26 ± 0.06	4	1.8 ± 0.3	0.046 ± 0.01	39	2.0 ± 0.3	0.81 ± 0.05	2.5
Ir3	1.6 ± 0.4	0.11 ± 0.04	15	1.4 ± 0.2	0.069 ± 0.015	20	1.1 ± 0.1	0.17 ± 0.07	6.5
Ir4	1.8 ± 0.2	0.11 ± 0.06	4	1.6 ± 0.2	0.040 ± 0.009	40	2.1 ± 0.3	0.50 ± 0.04	4.2
cisplatin	14.1 ± 1.1	13.0 ± 1.2	1.1	33.4 ± 2.3	33.1 ± 2.6	1.0	11.5 ± 0.5	10.9 ± 0.8	1.0


 ${}^{a}IC_{50}$ values are drug concentrations necessary for 50% inhibition of cell viability. Data are presented as means \pm standard deviation obtained in at least three independent experiments. Cells are treated with complexes for 48 h. b Phototoxicity index is the ratio of the IC₅₀ value in dark to that obtained upon light irradiation. Cells were treated

with the compounds for 12 h and then exposed to 450 nm LED light for 10 min.

^c PI (Phototoxicity index) is the ratio of the IC₅₀ value in the dark to that obtained upon light irradiation.

Fig. S1 A) UV/Vis spectra of **Ir1-Ir4** (20 μ M) in CH₃CN at 298 K. B) UV/Vis spectra of **Ir1-Ir4** (20 μ M) in CH₂Cl₂ at 298 K. C) Normalized emission spectra of **Ir1-Ir4** (20 μ M) in CH₃CN at 298 K ($\lambda_{ex} = 405$ nm). D) Normalized emission spectra of **Ir1-Ir4 Ir4** (20 μ M) in CH₂Cl₂ at 298 K ($\lambda_{ex} = 405$ nm).

Fig. S2 Confocal images of A549 cells after incubation with **Ir1** (10 μ M) under different conditions. (A) Cells were incubated with **Ir1** (10 μ M) at 37 °C for 10 min. (B) Cells were incubated with **Ir1** (10 μ M) at 4 °C for 10 min. (C) Cells were pre-incubated with CCCP (10 μ M) for 1 h at 37 °C and then incubated with **Ir1** (10 μ M) at 37 °C for 10 min. (D) Cells were pre-incubated with chloroquine (50 μ M) for 1 h at 37 °C and then incubated with **Ir1** (10 μ M) at 37 °C for 10 min. (D) Cells were pre-incubated with chloroquine (50 μ M) for 1 h at 37 °C and then incubated with **Ir1** (10 μ M) at 37 °C for 10 min. Complex 7 was excited at 405 nm and emission was collected at 600 ± 20 nm. Scale bar: 10 μ m.

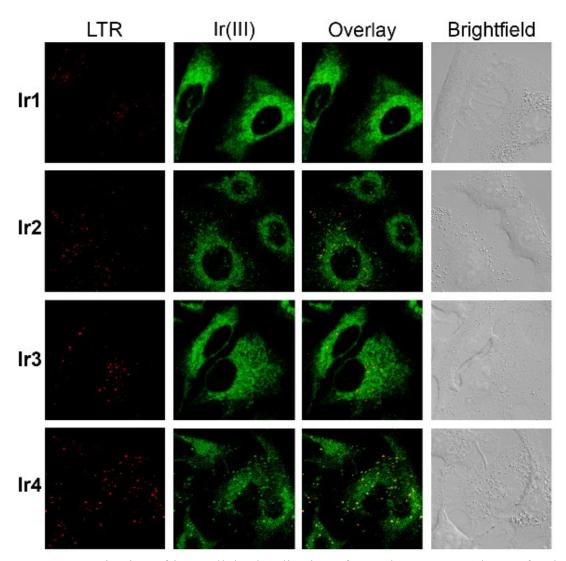
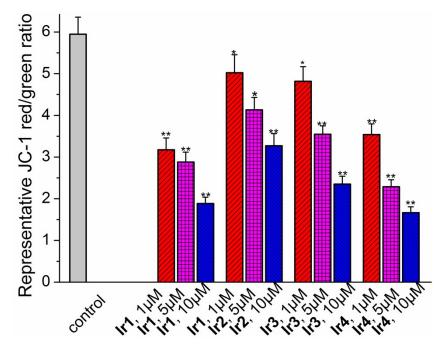
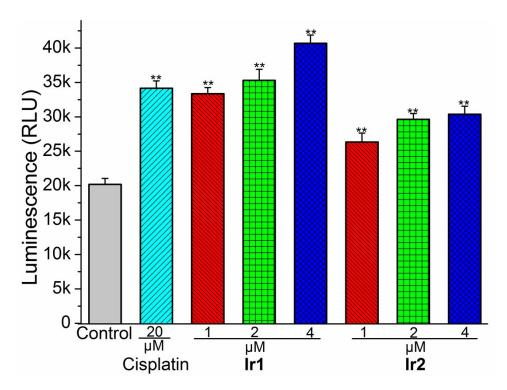




Fig. S3 Determination of intercellular localization of complexes Ir1-Ir4 by confocal microscopy. A549 cells were incubated with LTDR (100 nM) for 20 min and then co-incubated with Ir1-Ir4 (10 μ M)) for another 10 min at 37 °C. The Ir(III) complexes were excited at 405 nm and the emission was collected at 600 ± 20 nm. LTDR was excited at 633 nm and the emission was collected at 660 ± 20 nm. Scale bar: 10 μ m.

Fig. S4 Impact of complexes **Ir1-Ir4** on MMP. The fluorescent intensity ration of A549 cells treated with **Ir1-Ir4** at indicated concentrations for 6 h. Data shown are mean values \pm standard deviations from three independent experiments. (*) P < 0.01, (**) P < 0.005, compared with the vehicle-treated cells.

Fig. S5 Activation of caspases-3/7 by Ir(III) treatment. A549 cells were exposed to cisplatin, **Ir1** and **Ir2** at the indicated concentrations for 12 h. Data shown are mean values \pm standard deviations from three independent experiments. (**) P < 0.005, compared with the vehicle-treated cells.

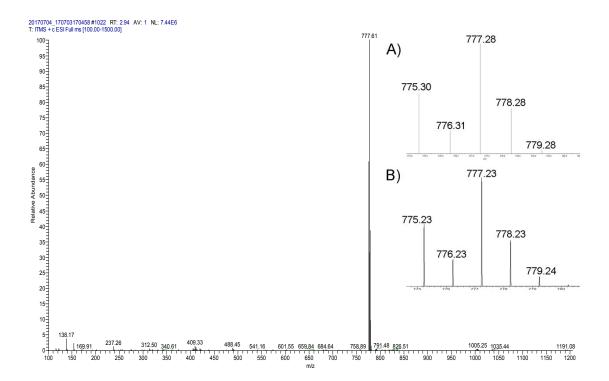


Figure S6 ESI-MS spectrum of complexes Ir1. A) Ion isotopes spectrum of complexes Ir1. B) Ion isotopes spectrum of computer simulation using formula $IrC_{39}H_{32}N_6$, corresponding to $[Ir1-Cl]^+$.

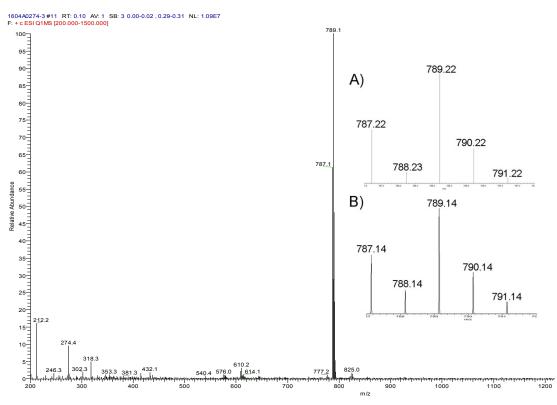
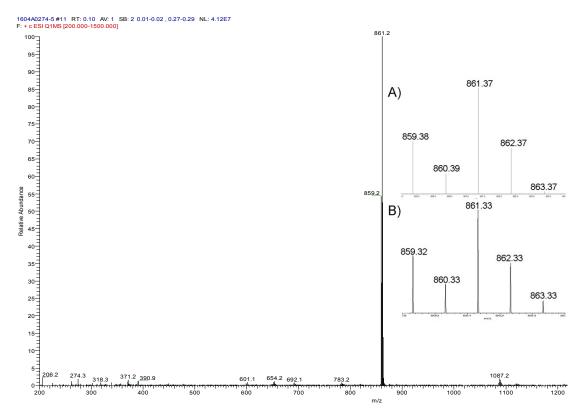



Figure S7 ESI-MS spectrum of complexes Ir2. A) Ion isotopes spectrum of complexes Ir2. B) Ion isotopes spectrum of computer simulation using formula $IrC_{35}H_{28}N_6S_2$, corresponding to $[Ir2-Cl]^+$.

Figure S8 ESI-MS spectrum of complexes Ir3. A) Ion isotopes spectrum of complexes Ir3. B) Ion isotopes spectrum of computer simulation using formula $IrC_{45}H_{44}N_6$, corresponding to $[Ir3-Cl]^+$.

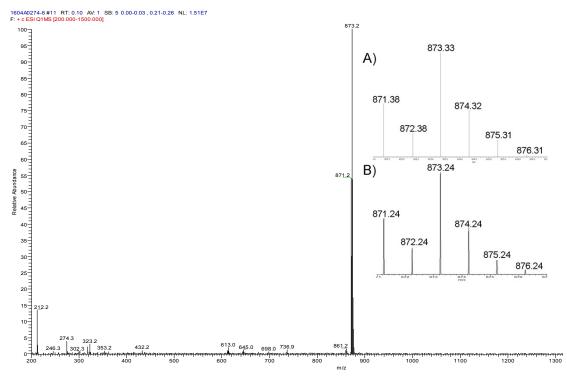


Figure S9 ESI-MS spectrum of complexes Ir4. A) Ion isotopes spectrum of complexes Ir4. B) Ion isotopes spectrum of computer simulation using formula $IrC_{41}H_{40}N_6S_2$, corresponding to $[Ir4-Cl]^+$.

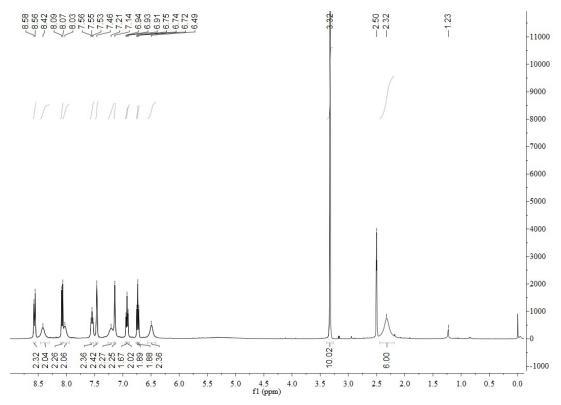


Figure S10 ¹H NMR spectrum of complexes Ir1.

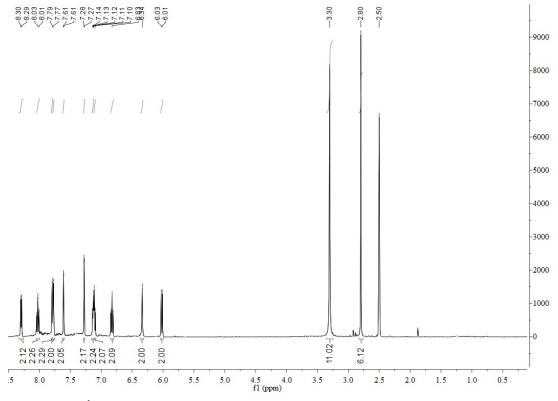


Figure S11 ¹H NMR spectrum of complexes Ir2.

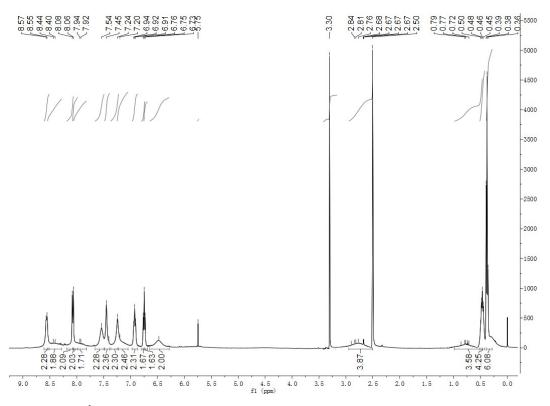


Figure S12 ¹H NMR spectrum of complexes Ir3.

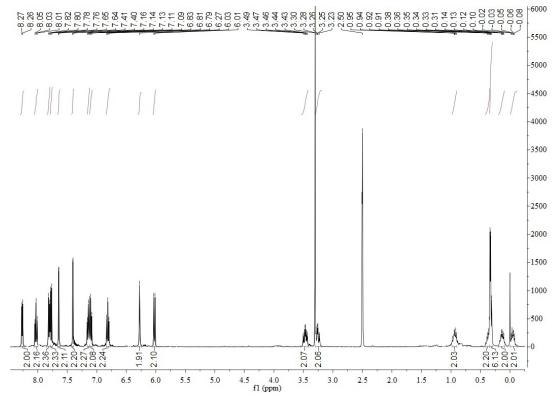


Figure S13 ¹H NMR spectrum of complexes Ir4.