Electronic Supplementary Information

Heteroleptic nickel(II)-diNHC complexes and unusual 'reverse' carbene-transfer to

silver(I)

Han Vinh Huynh,* Christine Hui Min Koh and Van Ha Nguyen

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore. Email: chmhhv@nus.edu.sg

Contents

Table S1. Selected Crystal Data for $2 \cdot 0.5 CH_2 Cl_2$, $4 \cdot 0.5 CH_2 Cl_2 \cdot 0.5 C_7 H_8$, $5 \cdot CH_2 Cl_2$ and 6	S 2			
Figure S1. IR spectrum (KBr) of complex 2	S 3			
Figure S2. IR spectrum (KBr) of complex 3	S 4			
Figure S3. IR spectrum (KBr) of complex 5				
Figure S4. Combined UV-Vis spectrum of complexes 1–4				
Figure S5. Calculated (a) and experimental ESI-MS (+) isotopic splitting pattern (b) for	S 7			
the $[Ag_2(^{Me}CC_{prop})_2]^{2+}$ dicationic fragment.				
Figure S6. ¹ H NMR spectra of complex 1 in CD ₃ CN before (blue line) and after the	S 8			
addition of 2 equiv. of AgOAc (black line).				
Figure S7. ¹ H NMR spectra of complex 6 in CD ₃ CN before (blue line) and after the				
addition of 1 equiv. of [NiBr ₂ (PPh ₃) ₂] (black line)				
Figure S8. ¹ H NMR spectra of 1 in CD ₃ CN before (blue line) and after the addition of 2	S10			
equiv. of [AuCl(tht)] and stiring for 10 h (black line).				

	$2 \cdot 0.5 CH_2 Cl_2$	$4 \cdot 0.5 CH_2 Cl_2 \cdot 0.5 C_7 H_8$	5.CH ₂ Cl ₂	6
Formula	C _{19.5} H ₂₁ ClN ₁₀ Ni	C ₂₃ H ₂₅ ClI ₂ N ₄ Ni	C _{23.5} H ₂₂ Cl ₂ F _{5.5} N ₄ NiO _{3.5}	C ₂₃ H ₂₆ Ag ₂ N ₄ O ₄
Formula weight	489.62	705.43	650.56	638.22
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Crystal size (mm ³)	$0.16 \times 0.10 \times 0.06$	$0.36 \times 0.10 \times 0.06$	$0.30 \times 0.10 \text{ v} 0.04$	$0.30 \times 0.10 \times 0.04$
Temperature (K)	293(2)	100(2)	293(2)	100(2)
Crystal system	Triclinic	Triclinic	Triclinic	Orthorhombic
Space group	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	Pbcn
a (Å)	8.1139(9)	8.6988(13)	8.649(6)	16.9338(16)
<i>b</i> (Å)	11.2775(13)	12.4353(19)	10.986(8)	8.5206(8)
<i>c</i> (Å)	12.7151(14)	13.505(2)	15.733(12)	16.0788(15)
α(°)	93.185(3)	105.180(2)	81.770(16)	90
β (°)	104.866(3)	102.756(2)	85.099(18)	90
$\gamma(^{\circ})$	107.323(2)	108.548(2)	70.204(14)	90
$V(Å^3)$	1062.5(2)	1260.7(3)	1390.9(18)	2319.9(4)
Z	2	2	2	4
Density (calcd. $g \text{ cm}^{-3}$)	1.530	1.858	1.553	1.827
μ (mm ⁻¹)	1.069	3.342	0.961	1.726
θ range (°)	1.67 to 27.50	1.85 to 27.50	1.31 to 25.00	2.41 to 27.50
Unique data	8800	16785	27261	15192
Max., min. transmission	0.5629 and 0.4795	0.8247 and 0.3792	0.9626 and 0.7613	0.9342 and 0.6255
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0617,$	$R_1 = 0.0592,$	$R_1 = 0.0672,$	$R_1 = 0.0272,$
	$wR_2 = 0.1434$	$wR_2 = 0.1577$	$wR_2 = 0.1511$	$wR_2 = 0.0624$
R indices (all data)	$R_1 = 0.0940,$	$R_1 = 0.0838,$	R1 = 0.1031,	$R_1 = 0.0360,$
	$wR_2 = 0.1715$	$wR_2 = 0.1728$	$wR_2 = 0.1717$	$wR_2 = 0.0657$
Goodness-of-fit on F^2	1.047	1.051	1.070	1.036
Peak hole (e Å ⁻³)	0.941 and -0.922	2.897 and -1.571	0.703 and -0.589	0.673 and -0.319

$\textbf{Table S1. Selected Crystal Data for } \textbf{2} \cdot 0.5 CH_2 Cl_2, \textbf{4} \cdot 0.5 CH_2 Cl_2 \cdot 0.5 C_7 H_8, \textbf{5} \cdot CH_2 Cl_2 \text{ and } \textbf{6}$

Figure S1. IR spectrum (KBr) of complex 2

Figure S2. IR spectrum (KBr) of complex 3

Figure S3. IR spectrum (KBr) of complex 5

Figure S4. Combined UV-Vis spectrum of complexes 1–4

Figure S5. Calculated (a) and experimental ESI-MS (+) isotopic splitting pattern (b) for the $[Ag_2(^{Me}CC_{prop})_2]^{2+}$ dicationic fragment.

Figure S6. ¹H NMR spectra of complex **1** in CD₃CN before (blue line) and after the addition of 2 equiv. of AgOAc (black line).

After addition of AgOAc, only signals due to disilver complex 6 were observed. Immediate precipitation of NiBr₂ was also observed.

Figure S7. ¹H NMR spectra of complex **6** in CD₃CN before (blue line) and after the addition of 1 equiv. of $[NiBr_2(PPh_3)_2]$ (black line).

Figure S8. ¹H NMR spectra of **1** in CD₃CN before (blue line) and after the addition of 2 equiv. of [AuCl(tht)] and stiring for 10 h (black line).

ESI mass analysis of the mixture:

After mixing $[NiBr_2(^{Me}CC_{prop})]$ (1) with [AuCl(tht)] in 1:2 mole ratio, the following fragments were observed on ESI-MS.

[Ni(^{Me}CC_{prop})(MeCN)₂]²⁺: Calcd. *m/z* for C₂₃H₂₆N₆Ni: 222. Found *m/z* 222 (100%)

[NiCl(^{Me}CC_{prop})]⁺: Calcd. *m*/*z* for C₁₉H₂₀ClN₄Ni: 397. Found *m*/*z* 397 (15%)

[NiCl(^{Me}CC_{prop})(MeOH)]⁺: Calcd. *m*/*z* for C₂₀H₂₄ClN₄NiO: 429. Found *m*/*z* 429 (40%)

[NiCl(^{Me}CC_{prop})(MeCN)]⁺: Calcd. *m/z* for C₂₁H₂₃ClN₅Ni: 438. Found *m/z* 438 (80%)