Electronic Supplementary Information

A Schiff base platform: structures, sensing of Zn(II), PPi in aqueous medium and anticancer activity

Barnali Naskar^a, Ritwik Modak^a, Dilip K. Maiti^a, Michael G. B. Drew^b, Antonio Bauzá^c, Antonio Frontera^c, Chitrangada Das Mukhopadhyay^d, Snehasis Mishra^e, Krishna Das Saha^e, and Sanchita Goswami^{*,a}

^aDepartment of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata – 700009, India

^bDepartment of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.

^cDepartament de Química, Universitat de les IllesBalears, Crta. deValldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain

^dCentre for Healthcare Science & Technology, Indian Institute of Engineering Science and Technology, Shibpur Howrah 711103, India

^eCancer and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, West Bengal, India. E-mail: krishna@iicb.res.in

Contents of the Supporting Information

1. Characterization, Structure and Crystallographic Data	Pages
Figure S1. ¹ H and ¹³ C–NMR spectrum of H_2Vd .	S 3
Figure S2. ¹ H–NMR titration of H_2Vd with Zn(NO ₃) ₂ .6H ₂ O in DMSO–d ₆ solution.	S4
Figure S3. ¹ H–NMR titration of complex 1a with PPi in DMSO– d_6 solution.	S5
Figure S4. ³¹ P–NMR titration of complex 1a with PPi in D_2O solution.	S6-7
Figure S5. FT-IR Spectrum of H ₂ Vd complexes 1(a-c), 2 and PPi complex (3).	S8-10
Figure S6. ESI–MS of H ₂ Vd complexes 1(a-c), 2 and PPi complex (3) in water solution.	S11-16
Figure S7. PXRD pattern of complexes 1(a-c) and 2 vs. simulated pattern.	S17
Figure S8. Packing in complex 1a.	S18
Figure S9. Molecular representation of complex 1c crystal packing view along crystallographic 'b' and 'c' axis.	S19
Figure S10. The inter-molecular (a) C – H ^{\dots} π and (b) Van der Waals interactions in complex 1b .	S19
Figure S11. Packing in complex 2.	S20
Table S1. ¹ H–NMR shift data of NMR titration experiment of H ₂ Vd.	S20
Table S2. Crystallographic and structural data refinement of complexes 1(a-c) and 2.	S21

Table S3. Selected Geometrical Parameters (Distances/Å and Angles/deg) for complexes 1(a-c) and 2.	S22-23
Table S4. Results of continuous shape measurement analysis for the coordination spheres in complexes 1(a-c) and 2.	S23-26
Table S5. Parameters used for determining nitrate coordination mode and appropriate values for the coordinated nitrate complex 1a and 2.	group in S27-28
Table S6. Hydrogen bonds in the complexes 1(a-c)-2.	S29
Table S7. Distances (d/Å) and angles (°) for the π -contacts in the crystal structures.	S30-31
Scheme S1. Graphical presentation of the parameters used for the description of (a) $\pi \cdots \pi$ stacking and (b) CH $\cdots \pi$ intera	ictions. S30
Scheme S2. Different Coordination modes exhibited by the ligand (H_2Vd) in the literatures.	S32
2. PhotophysicalCharacterization	
Figure S12. Absorption spectra of H_2Vd upon titration with Zn^{2+} .	S33
Figure S13. Job's plot for determination of stoichiometry of Zn^{2+} : H_2Vd complex in solution.	S34
Figure S14. Benesi-Hildebrand plot of absorbance titration curve of H_2Vd and Zn^{2+} ion.	S35
Figure S15. Benesi–Hildebrand plot of fluorescence titration curve of H_2Vd and Zn^{2+} .	S36
Figure S16. The limit of detection (LOD) of H_2Vd for Zn^{2+} as a function of $[Zn^{2+}]$.	S 37
Figure S17. Emission intensity of H_2Vd in absence and in presence of Zn^{2+} ion at different pH values in solution.	S38
Figure S18. Absorption spectra of H_2Vd upon titration with PPi.	S39
Figure S19. Fluorescence spectra of complex 1a upon the addition of different anions in solution.	S40
Figure S20. Visual color change observed with the addition of various anions to complex 1a as seen under UV light (λ nm).	= 365 S40
Figure S21. Job's plot for the identification of complex 1a-PPi (1:1) complex stoichiometry using absorbance values.	S41
Figure S22. Benesi–Hildebrand plot of fluorescence titration curve of Complex 1a and PPi.	S42
Figure S23. The limit of detection (LOD) of complex 1a for PPi as a function of PPi concentration.	S43
Figure S24. Time–resolved fluorescence decay of H_2Vd and presence of added Zn^{2+} in solution.	S44
Figure S25. Construction of INHIBIT logic gate.	S45
Table S8. Fluorescence lifetime measurement of chemosensor H_2Vd and the presence of Zn^{2+} in solution.	S45
Table S9. Stability constant was compared with complexation properties of the other metal ions.	S46
3. Cell Study	

Figure S26. Cell viability curve of ligand (H_2Vd) .

S47

¹H and ¹³C–NMR spectra: H_2Vd were dissolved in d_6 –DMSO and recorded with TMS as internal standard on a Bruker, AV 300 Supercon Digital NMR system.

Figure S1. ¹H and ¹³C–NMR spectrum of chemosensor H_2Vd .

Figure S2. ¹H–NMR titration of **H**₂**Vd** with Zn(NO₃)₂.6H₂O in DMSO–d₆ solution.

Figure S3. ¹H–NMR titration of complex **1a** with PPi in DMSO–d₆ solution.

Figure S4. ³¹P–NMR titration of complex **1a** with PPi in D₂O solution.

FT–IR spectroscopy: Fourier transform infrared (FT–IR) spectra were recorded with a Perkin–Elmer RXI FT–IR spectrophotometer using the reflectance technique (4000–400 cm⁻¹). Samples were prepared as KBr disks.

Figure S5. FT-IR Spectrum of H₂Vd, complexes 1(a-c), 2 and PPi complex (3).

Electrospray ionization mass spectra: (HR–ESI–MS) were recorded on Qtof Micro YA263 mass spectrometer dissolving the samples in LC–MS quality water.

Figure S6. ESI–MS of ligand (H₂Vd) in complexes 1(a-c), 2 and PPi complex (3).

Powder X–ray diffraction: (PXRD) patterns were recorded on a PANalytical, XPERT–PRO diffractometer with Cu K_a radiation (40 kV, 30 mA, $\lambda = 1.5406$ Å).

Figure S7. PXRD pattern of complexes 1(a-c) and 2 vs. simulated pattern.

Figure S8. Packing in complex **1a** (a) Intra-molecular hydrogen bonds (where dotted pink lines and dotted yellow lines respectively represent strong and comparatively weak hydrogen bonds). (b) Formation of 1D Chain through intra-molecular C–H $\cdots\pi$ interactions (shown as dotted green lines).

Figure S9. Molecular representation of crystal packing down crystallographic 'b' and 'c' axes in complex **1c** (complex **1b** is isostructural).

Figure S10. The inter-molecular (a) $C - H^{-}\pi$ and (b) Van der Waals interactions in complex 1b.

Figure S11. (a) 2D Sheet view along crystallographic b axis of complex 2. (b) The H-bonds (light blue) and van der Waals (pink) interactions within 2D sheet of complex 2. (c) 3D packing constituted by 2D sheets connected via intermolecular C – $H^{--}\pi$ interactions. (d) The C – $H^{--}\pi$ interactions between the 2D Sheets.

Table S1. ¹H and ¹³C–NMR shift data of NMR titration experiment of H₂Vd.

	$^{1}\mathrm{H}$										
Proton label	Free H ₂ Vd (ppm) (A)	H ₂ Vd + 0.5 equiv. Zn(NO ₃) ₃ [•] 6H ₂ O (ppm) (B)	H ₂ Vd + 1.0 equiv. Zn(NO ₃) ₃ [•] 6H ₂ O (ppm) (C)	H ₂ Vd + 1.5 equiv. Zn(NO ₃) ₃ [•] 6H ₂ O (ppm) (D)	$H_2Vd + 2.0$ equiv. Zn(NO ₃) ₃ 6H ₂ O (ppm) (E)	Shift (E-A) (ppm)					
Ha	8.369	8.454	8.714	8.717	8.719	0.35 downfield					
	¹³ C										
Ca	177.31	178.90	192.21	195.54	202.01	24.7 downfield					

	Complex (1a)	Complex (1b)	Complex (1c)	Complex (2)	
	C UNO 7		C II INOZ		
Chemical formula	$C_{40.5}H_{50}N_8O_{14.5}Zn_2$	$C_{40}H_{48}Br_2N_6O_8Zn_2$	$C_{40}H_{48}I_2N_6O_8Zn_2$	$C_{40}H_{46}Cd_3N_8O_{14}$	
CCDC	1541737	1541738	1541742	1541744	
Formula weight	1011.62	1031.42	1125.38	1200.05	
Temperature/K	150(2)	150(2)	150(2)	150(2)	
$\lambda^{a}/$ Å	0.71073	0.71073	0.71073	0.71073	
Crystal system	ystal system monoclinic tetragor		tetragonal	monoclinic	
Space group	P21/c	I4 ₁ /acd	I4 ₁ /acd	C2/c	
<i>a</i> (Å)	11.2108(8)	17.3167(7)	17.5829(8)	22.4096(8)	
b (Å)	28.827(2)	17.3167(7)	17.5829(8)	12.5242(4)	
c (Å)	14.9281(16)	27.7850(18)	27.888(3)	16.1728(7)	
β (°)	109.109(10)	90.00	90.00	106.738(4)	
Z	4	8	8	4	
$V(\text{\AA}^3)$	4558.5(7)	8331.8(7)	8621.8(10)	4346.8(3)	
$\rho \operatorname{calc}(g/\mathrm{cm}^3)$	1.474	1.644	1.734	1.834	
$\mu(\mathrm{mm}^{-1})$	1.127	3.129	2.602	1.531	
<i>F</i> (000)	2100	4192	4480	2392	
θ min–max (°)	3.46 to 30.00	3.76 to 30.00	3.73 to 30.00	3.45 to 30.00	
RefIns collected	30046	8220	9763	14694	
Independent	12895	2900	3117	6284	
reflns					
R(int)	0.0836	0.0638	0.0548	0.0252	
S(GOF)	1.002	1.143	1.071	1.076	
$R1, wR2(I>2\sigma(I))^{b}$	$0.0736^{b}, 0.1486^{c}$	0.0665 ^b , 0.0973 ^c	0.0514 ^b , 0.0905 ^c	0.0454 ^b , 0.0953 ^c	
R1, wR2(all data) ^b	0.1380 ^b , 0.1726 ^c	0.1138 ^b , 0.1079 ^c	0.0896 ^b , 0.1008 ^c	0.0547 ^b , 0.0993 ^c	
largest diff peak, hole/e Å ⁻³	0.852 and -0.707	0.444 and -0.673	0.482 and -0.827	3.460 and -1.885	

Table S2. Single Crystal X-ray	diffraction:	Crystallographic	data for complexes	s 1(a-c) and 2
--------------------------------	--------------	------------------	--------------------	----------------

^aGraphite monochromator, ^bR₁ = $\Sigma(|F_o| - |F_c|)/\Sigma|F_o|$. ^cwR₂ = { $\Sigma[w(|F_o|^2 - |F_c|^2)^2]/\Sigma[w(|F_o|^2)^2]$ }^{1/2}

Table S3. Bond distances (A) and angles () in the metal coordination spheres of complexes I(a-c) and	Table S3. Bond d	istances (A) a	and angles (°	') in tl	ne metal	coordination	spheres o	f complexes	1(a-c) an	ıd 2.
---	------------------	----------------	---------------	----------	----------	--------------	-----------	-------------	------------------	-------

Complex (1a) Complex (1b) Complex (1c) Complex	Complex (2)		
Zn(1)–O(1) 1.995(3) Zn(1)–O(1) 1.992(2) Zn(1)–O(1) 1.986(3) Cd(1)–O(1)	2.203(2)		
Zn(1)–O(5) 1.986(3) Zn(1)–N(1) 2.135(3) Zn(1)–N(1) 2.135(3) Cd(1)–O(2)	2.287(2)		
Zn(1)–O(9) 2.267(3) Zn(1)–Br(2) 2.4595(8) Zn(1)–I(2) 2.6710(7) Cd(1)–O(3)	2.740(3)		
Zn(1)-N(1) 2.071(4) Br(2)-Zn(1)-O(1) 115.14(7) I(2)-Zn(1)-O(1) 115.09(7) Cd(1)-O(4)	2.451(3)		
Zn(1)-N(4) 2.072(4) $Br(2)-Zn(1)-N(1)$ 95.83(8) $I(2)-Zn(1)-N(1)$ 95.03(8) $Cd(2)-O(1)$	2.236(2)		
Zn(2)-O(2) 2.009(3) $O(1)-Zn(1)-N(1)$ 86.64(11) $O(1)-Zn(1)-N(1)$ 86.35(12) $Cd(2)-O(2)$	2.350(2)		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.330(2)		
$\frac{7}{2} = \frac{1}{2} = \frac{1}$	2.347(3)		
$\frac{Z_{\text{II}}(2) - O(12)}{Z_{\text{II}}(2)} = \frac{Z_{\text{II}}(2)}{Z_{\text{II}}(2)} = \frac{O(1) - Z_{\text{II}}(1) - O(1)}{O(1) - Z_{\text{II}}(1) - O(1)} = \frac{O(1) - Z_{\text{II}}(1) - O(1)}{O(1) - Z_{\text{II}}(1) - O(1)} = \frac{O(1) - O(1)}{O(1) - O(1)} = \frac{O(1) - O(1)}{O(1)} = \frac{O(1) - O(1)}{O(1) - O(1)} = \frac{O(1) - O(1)}{O(1)} = O(1$	2.731(4)		
$\frac{2 \ln(2) - N(3)}{2 \ln(3)} = \frac{2}{N(1) - 2 \ln(1) - N(1)} = \frac{1}{108.34(10)} = \frac{1}{N(1) - 2 \ln(1) - N(1)} = \frac{1}{109.94(10)} = \frac{1}{N(2) - N(1)} = \frac{1}{N(2) - N(2)} = \frac$	2.299(3)		
Zh(2)=N(6) 2.0/4(3) symmetry element 1-x, 1/2-y, z symmetry element 1-x, 1/2-y, z Cd(2)=N(2)	2.523(4)		
O(5)-Zn(1)-O(1) 128.27(11) $Cd(2)-N(3)$	2.313(4)		
O(5)–Zn(1)–N(1) 93.16(13) O(1)–Cd(1)–O(2)	72.56(9)		
O(1)–Zn(1)–N(1) 88.42(13) O(1)–Cd(1)–O(3)	61.45(9)		
O(5)–Zn(1)–N(4) 89.79(13) O(1)–Cd(1)–O(4)	138.74(9)		
O(1)–Zn(1)–N(4) 91.90(13) O(2)–Cd(1)–O(3)	125.24(9)		
N(1)–Zn(1)–N(4) 175.98(13) O(2)–Cd(1)–O(4)	67.04(9)		
O(5)–Zn(1)–O(9) 90.51(12) O(3)–Cd(1)–O(4)	155.18(10)		
O(1)-Zn(1)-O(9) 141.18(12) O(1)-Cd(1)-O(1) ^a	99.27(14)		
N(1)-Zn(1)-O(9) 87.61(13) O(1)-Cd(1)-O(2) ^a	137.18(9)		
N(4)–Zn(1)–O(9) 89.63(13) O(2)-Cd(1)-O(2) ^a	140.87(12)		
O(6)–Zn(2)–O(2) 128.39(12) O(1)-Cd(1)-O(4) ^a	104.47(10)		
O(6)–Zn(2)–N(6) 90.07(12) O(2)-Cd(1)-O(4) ^a	82.66(10)		
O(2)–Zn(2)–N(6) 89.31(13) O(4)-Cd(1)-O(4) ^a	78.70(15)		
O(6)-Zn(2)-N(3) 90.44(12) O(1)-Cd(1)-O(3) ^a	80.71(9)		
O(2)-Zn(2)-N(3) 88.16(13) O(2)-Cd(1)-O(3) ^a	75.74(9)		
N(6)–Zn(2)–N(3) 177.14(14) O(4)-Cd(1)-O(3) ^a	81.70(9)		
O(6)-Zn(2)-O(12) 97.53(12) O(3)-Cd(1)-O(3) ^a	120.85(12)		
O(2)–Zn(2)–O(12) 134.07(11) O(1)–Cd(2)–O(2)	70.78(9)		
N(6)-Zn(2)-O(12) 92.14(12) O(1)-Cd(2)-O(5C)	94.31(12)		
N(3)-Zn(2)-O(12) 90.58(12) O(1)-Cd(2)-O(6C)	79.93(11)		
O(1)-Cd(2)-N(1)	77.57(11)		
O(1)-Cd(2)-N(2)	141.69(11)		
O(1)-Cd(2)-N(3)	146.25(10)		
O(2)-Cd(2)-O(5C)	97.70(11)		
O(2)-Cd(2)-O(6C)	133.18(11)		
O(2)-Cd(2)-N(1)	119.90(10)		
O(2)-Cd(2)-N(2)	145.15(11)		
O(2)-Cd(2)-N(3)	76.92(10)		
O(5C)-Cd(2)-O(6C)	48.27(11)		
O(5C)-Cd(2)-N(1)	135.01(12)		
O(5C)-Cd(2)-N(2)	92.45(13)		
O(5C)-Cd(2)-N(3)	80.38(12)		
O(6C)-Cd(2)-N(1)	86.83(12)		
O(6C)-Cd(2)-N(2)	76.80(12)		

			O(6C)-Cd(2)-N(3)	117.52(11)
			N(1)-Cd(2)-N(2)	71.18(12)
			N(1)-Cd(2)-N(3)	128.83(12)
			N(2)-Cd(2)-N(3)	72.05(12)
			Cd(1)-O(1)-Cd(2)	111.75(11)
			Cd(1)-O(2)-Cd(2)	104.83(10)
			^a symmetry element	1-x, y, 1/2-z

Table S4. Results of Continuous Shape Measurement analysis for the Zn(II) and Cd(II) coordination spheres in complexes **1(a-c)** and **2**.

Shape analysis : Continuous Shape Measurement (CShM)^a of coordination sphere using SHAPE v2.1.

For Zn1 and Zn2 in complex 1a

S H A P E v2.1 Continuous Shape Measures calculation (c) 2013 Electronic Structure Group, Universitat de Barcelona Contact: llunell@ub.edu								
Zn2L2(NO3) stru	ictures							
PP-5 1	D5h	Pentagon						
vOC-5 2	C4v	Vacant o	ctahedron					
TBPY-5 3	D3h	Trigonal	bipyramid					
SPY-5 4	C4v	Spherica	l square pyra	mid				
JTBPY-5 5	D3h	Johnson	trigonal bipy	ramid J12				
For Znl								
Structure [ML5]		PP-5	vOC-5	TBPY-5	SPY-5	JTBPY-5		
Complex (<mark>1a</mark>),		29.952,	4.825,	1.385,	4.091,	3.999		
For Zn2								
Structure [ML5]		PP-5	vOC-5	TBPY-5	SPY-5	JTBPY-5		
Complex (<mark>1a</mark>),		28.032,	3.433,	2.413,	3.089,	4.983		
Zn2L3(NO3) stru	ictures							
HP-6	1 D6h	Hexagon						
PPY-6	2 C5v	Pentagonal	pyramid					
OC-6	3 Oh	Octahedron						
TPR-6	4 D3h	Trigonal p	rism					
JPPY-6	5 C5v	Johnson pe	ntagonal pyra	mid J2				
For Zn1								
Structure [ML6]		HP-6	PPY-6	OC-6	TPR-6	JPPY-6		
Complex (<mark>1a</mark>),		34.695,	20.027,	5.312,	9.020,	23.654		
For Zn2								
Structure [ML6]		HP-6	PPY-6	OC-6	TPR-6	JPPY-6		
Complex (<mark>1a</mark>),		34.517,	21.444,	4.776,	9.274,	25.089		

For Zn1/Zn1[#] in complex **1b**

```
SHAPE v2.1
                         Continuous Shape Measures calculation
(c) 2013 Electronic Structure Group, Universitat de Barcelona
                   Contact: llunell@ub.edu
                         _____
ZnL2 structures
PP-5
                 D5h
                         Pentagon
v0C-5
            2
                        Vacant octahedron
                 C4v
TBPY-5
            3
                 D3h
                        Trigonal bipyramid
SPY-5
             4
                 C4v
                        Spherical square pyramid
JTBPY-5
                 D3h
                        Johnson trigonal bipyramid J12
            5
For Zn1/Zn1<sup>#</sup>
Structure [ML5]
                                            TBPY-5
Complex (1b),
```

^aCShM values between 0.1 and 3 usually correspond to a not negligible but still small distortion from ideal geometry.

For Zn/Zn1[#] in complex **1c**

SHAPE	SHAPE v2.1 Continuous Shape Measures calculation									
(c) 2013 Electronic Structure Group, Universitat de Barcelona										
Contact: llunell@ub.edu										
ZnL2 struct	ures									
00_000										
PP-5	1	D5h	Pentagor	`						
11 J	2	C/m	Vacant	atabedron						
VOC 5	~	0.40	Vacant	ctaneuron						
TBPY-5	3	D3h	Trigonal	l bipyramid						
SPY-5	4	C4v	Spherica	al square p	yramid					
JTBPY-5	5	D3h	Johnson	trigonal b	ipyramid J12					
For Zn1/Zn1	#									
Structure	ML5]	PP-		v 0C-5	TBPY-5	SPY-5	JTBPY-5			
Complex (<mark>10</mark>),	36.3	81,	6.717,	1.646,	3.354,	5.157			

1. Characterization, Structure and Crystallographic Data.

For Cd2/Cd2[#] in complex 2

SHAPE v2.	S H A P E v2.1 Continuous Shape Measures calculation									
(c) 2013 Electro	onic Str	ucture Group, Unive	ersitat de Ba	rcelona						
	Contact: llunell@ub.edu									
Cd3L2 structures	5									
up_7	1 D7b	Hontogon								
HPY-7	2 C6v	Hexagonal pyramid								
PBPY-7	3 D5h	Pentagonal bipyra	nid							
COC-7	4 C3v	Capped octahedron								
CTPR-7	5 C2v	Capped trigonal p	rism							
JPBPY-7	6 D5h	5 D5h Johnson pentagonal bipyramid J13								
JETPY-7	7 C3v	Johnson elongated	triangular p	vramid J7						
For Cd2/Cd2 [#]										
Structure [ML7]	HP-7	HPY-7 1	PBPY-7 CO	с-7 ст	PR-7 JPBPY-7	JETPY-7				
Complex (<mark>2</mark>),	33.802,	20.797, 8.0)69, <u>6.9</u> 9	0, 5.786	, 10.081,	14.081				
Cd3L3 structures	s									
HP-6	1 D6h	Hexagon								
PPY-6	2 C5v	Pentagonal pyramic	1							
OC-6	3 Oh	Octahedron								
TPR-6	4 D3h	Trigonal prism								
JPPY-6	5 C5v	Johnson pentagonal	l pyramid J2							
— — — — — — — — — —										
For Cd2/Cd2"										
Structure [ML6]	HP-6	PPY-6	OC-6	TPR-6	JPPY-6					
Complex (2),	23.649,	5.572,	15.070,	0.255,	8.780					

For Cd1 in complex 2

SHAPE	v2.1		Continuc	us Shape	Measures	calcula	tion			
(c) 2013 E	(c) 2013 Electronic Structure Group, Universitat de Barcelona									
Contact: llunell@ub.edu										
Cd3L2 struc	ctures									
OP-8	1	D8h	Oct	agon						
HPY-8	2 C7v Heptagonal pyramid									
HBPY-8	3	3 D6h Hexagonal bipyramid								
CU-8	4	Oh Cube								
SAPR-8	5	D4d Square antiprism								
TDD-8	6	D2d Triangular dodecahedron								
JGBF-8	7	D2d	D2d Johnson gyrobifastigium J26							
JETBPY-8	8	D3h	Joh	nson elor	igated tr	iangular	bipyrami	id J14		
JBTPR-8	9	C2v	Bia	ugmented	trigonal	. prism J	50			
BTPR-8	10	C2v	Bia	ugmented	trigonal	prism				
JSD-8	11	D2d	Snu	b diphenc	oid J84					
TT-8	12	Td	Tri	akis tetr	ahedron					
ETBPY-8	13	D3h	Elc	ngated tr	igonal b	oipyramid				
For Cd1										
Structure	[ML8]	OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JETBPY-8	JBTPR-8
Complex (<mark>2</mark>)		30.572,	23.480,	15.039,	9.889,	3.565,	2.641,	14.979,	24.634,	4.356,
		BTPR-8	JSD-8	TT-8	ETBPY-8					
		4.253,	4.348,	10.078,	18.859					

Table S5. Parameters used for determining nitrate coordination mode and appropriate values for the coordinated nitrate group in complexes **1**(**a**) and **2**.

	Monodentate	Anisobidentate	Bidentate	Comp	lex 1a
				Zn2	Zn1
$L_2-L_1(\text{\AA})$	>0.6	0.3–0.6	<0.3	0.442	0.363
$A_1 - A_2(^{o})$	>28	14–28	<14	19.7	16.93
L_3 – $L_2({A})$	<0.1	0.1–0.2	>0.2	0.181	0.211
$A_3(^{o})$	<162	162–168	>168	167.48	169.18

1. Characterization, Structure and Crystallographic Data.

	Monodentate	Anisobidentate	Bidentate	Complex 2
L_2 – $L_1(Å)$	>0.6	0.3–0.6	<0.3	0.403
$A_1 - A_2(^{o})$	>28	14–28	<14	19.3
L_3 – $L_2(\AA)$	<0.1	0.1–0.2	>0.2	0.607
$A_3(^{o})$	<162	162–168	>168	169.34

Complex 1a						
N-H···O	H···O	N···O	N-H···O			
N5-H5B O2	1.89	2.730(4)	157			
N5-H5BO4	2.51	3.116(4)	126			
N5-H5A01	1.94	2.764(4)	154			
N5-H5A O3	2.51	3.160(4)	131			
N2-H2A-05	1.91	2.744(5)	156			
N2-H2A07	2.49	3.149(5)	131			
N2-H2B O6	1.88	2.723(4)	158			
N2-H2B O8	2.54	3.144(5)	126			
O1S-H1S O11	1.94	2.752(8)	170			

Complex 1b					
N-H···O H···O N···O N-H···O					
N2-H2A O1 ^a	1.83	2.692(4)	159		
N2-H2A O2 ^a 2.45 3.023(4) 122					
^a S	Symmetry elem	nent 1-x, 1/2-y, z			

Complex 1c					
N-H···O H···O N···O N-H···O					
N2-H2A O1 ^a	1.82	2.687(4)	159		
N2-H2A O2 ^a 2.45 3.014(4) 122					
^a S	Symmetry elem	nent 1-x, 1/2-y, z			

Complex 2							
DH···A	d(D—H)	$d(H \cdots A)$	$d(D \cdots A)$	<(DHA)			
С9-Н9А…О5С	0.97	2.55	3.171(6)	122			
C12-H12···O6C	0.93	2.42	3.305(6)	160			

Scheme S1. Graphical presentation of the parameters used in Table S7. for the description of (a) $\pi \cdots \pi$ stacking and (b) CH $\cdots \pi$ interactions in complexes **1(a-c)–2**.

Table S7. Distances (d/A) and angles (°) for the π -contacts in the crystal structures of complexes $I(a-c)-2$.							
Complex, π - π interactions ring(I)ring(J)	$d[Cg(I)\cdots Cg(J)]^b$	α^c	β^d	γ^e	d[Cg(I)…P(J)] ^f	$d[Cg(J)\cdots P(I)]^g$	d[a] ^h
$\begin{array}{c} \text{Complex1}\mathbf{a} \\ \text{Cg}(7) \cdots \text{Cg}(10) \end{array}$	3.619(3)	9.4(2)	14.9	9.6	3.5690(19)	3.4981(17)	0.93 0.60
$\begin{array}{c} \text{Complex1}\mathbf{a} \\ \text{Cg}(8) \cdots \text{Cg}(9) \end{array}$	3.508(3)	8.9(2)	9.0	7.0	3.4812(19)	3.4647(19)	0.55 0.43
$\begin{array}{c} \text{Complex1} \mathbf{b} \\ \text{Cg}(3) \cdots \text{Cg}(3) \end{array}$	3.778(3)	7.5(2)	21.6	21.6	3.5137(18)	3.5136(18)	1.39
Complex1c Cg(3)···Cg(3)	3.829(3)	9.7(2)	21.1	21.1	3.5726(18)	3.5727(18)	1.38
Complex2 Cg(1)…Cg(1)	3.697(3)	9.1(2)	21.0	21.0	3.4504(19)	3.4506(19)	1.33
Complex, CH- π interactions ligand-C- H…ring	d[H…Cg] ⁱ	$d[H\cdots \perp]^{j}$	γ ^e	$\angle [CH\cdots Cg]^k$	d[C…Cg] ^l		
Complex1 a [C11–H11A Cg(9)]	2.75	2.68	12.83	156	3.658(5)		

Supporting Information

Complex1 b [C10–H10A Cg(3)]	2.89	2.72	20.01	125	3.533(5)	
Complex1c [C10–H10A Cg(3)]	2.91	2.78	17.60	128	3.579(5)	
Complex 2 [C19–H19C Cg(1)]	2.73	2.71	7.09	149	3.588(5)	

^{*a*}For a graphical depiction of distances and angles in the assessment of the π -contacts, see Scheme S1. ^{*b*}Centroid to centroid distance. ^{*c*}Dihedral angle between the ring planes. ^{*d*}Angle between the centroid vector Cg(I)…Cg(J) and the normal to the plane I. ^{*e*}Angle between the centroid vector Cg(I)…Cg(J) and the normal to the plane J. ^{*f*} Perpendicular distance of Cg(I) from ring plane J. ^{*g*}Perpendicular distance of Cg(J) from ring plane I. ^{*k*}Vertical displacement between ring centroids. ^{*i*}H-centroid distance. ^{*j*}Perpendicular distance of H from ring plane. ^{*k*}C-H-centroid angle. ^{*i*}C-centroid distance.

Complex1a

Cg(7) = C1 --> C2 --> C3 --> C4 --> C5 --> C6 ring Cg(10) = C33 --> C34 --> C35 --> C36 --> C37 --> C38 ring Cg(8) = C13 --> C14 --> C15 --> C16 --> C17 --> C18 ring Cg(9) = C21 --> C22 --> C23 --> C24 --> C25 --> C26 ring Complex1b and Complex1c Cg(3) = C(1) --> C(2) --> C(3) --> C(4) --> C(5) --> C(6) ring

Complex2

 $Cg(1) = C(1) \dashrightarrow C(2) \dashrightarrow C(3) \dashrightarrow C(4) \dashrightarrow C(5) \dashrightarrow C(6)$ ring

Scheme S2. Different Coordination modes exhibited by the ligand (H_2Vd) in the literature.

UV–Vis spectra of H_2Vd upon titration with Zn^{2+} ion.

Figure S12. UV-vis spectra of H_2Vd (5×10⁻⁷M) in HEPES buffer (pH = 7.4) solution in the presence of various concentrations of Zn²⁺ (0, 0.5, 1, 1.5, 2, 2.5, 3, 4 and 5) ×10⁻⁷ M. **Inset:** Absorbance of H_2Vd at 360 nm as a function of [Zn²⁺] and visual color change (yellow to colorless) observed with addition of Zn²⁺ ion to H_2Vd solution.

Figure S13. Job's plot for the identification of H_2Vd - $Zn^{2+}(1:1)$ complex stoichiometry using absorbance values at 360 nm.

The binding constant (*K*) determined by the Benesi–Hildebrand expression was found to be $34.362 \times 10^4 \text{ M}^{-1}$.

$$\frac{1}{(A - A_0)} = \frac{1}{\{K(A_{\max} - A_0)[C]\}} + \frac{1}{(A_{\max} - A_0)}$$

Where A_0 is the absorbance of free ligand, A is the observed absorbance at that particular wavelength in the presence of a certain concentration of the metal ion [C], A_{max} is the maximum absorbance value of the complex formed. K is the association constant (M^{-1}) and was determined from the slope of the linear plot and [C] is the concentration of the Zn^{2+} ion added during titration studies. The goodness of the linear fit of the B–H plot of $1/(A - A_0)$ vs. $1/[Zn^{2+}]$ for 1:1 complex formation confirms the binding stoichiometry between H₂Vd and Zn²⁺.

Figure S14. Benesi-Hildebrand plot of absorbance titration curve of H_2Vd and $[Zn^{2+}]$.

According to the linear Benesi–Hildebrand expression, the measured fluorescence intensity $(F - F_0)/(F_x - F_0)$ at 467 nm varied as a function of $1/[Zn^{2+}]$ in a linear relationship, which indicates the formation of 1 : 1 stoichiometry between Zn^{2+} and H_2Vd in the complex.

$$\frac{1}{F_{\rm X} - F_{\rm 0}} = \frac{1}{F_{\rm max} - F_{\rm 0}} + \frac{1}{\rm K[C]} \left(\frac{1}{F_{\rm max} - F_{\rm 0}}\right)$$

where F_0 , F_x and F_{max} are the emission intensities of organic moiety considered in the absence of Zn^{2+} ions, at an intermediate Zn^{2+} concentration and at a concentration of complete interaction, respectively, *K* is the binding constant and *[C]* is the concentration of Zn^{2+} ions.

Figure S15. Benesi-Hildebrand plot $[F-F_0/F_x-F_0]$ vs. $1/[Zn^{2+}]$ for complexation between **H**₂**Vd** and Zn²⁺ derived from emission titration curve.

Detection limit calculation in emission spectroscopy.

The limit of detection (LOD) of H_2Vd – Zn^{2+} was measured on the basis of fluorescence titration measurement. The detection limit was calculated using the following equation:

$$DL = K \times \frac{O}{S}$$

Figure S16. The limit of detection (LOD) of H_2Vd for Zn^{2+} fluorescence responses ($\lambda_{em} = 467$ nm) as a function of $[Zn^{2+}]$.

Figure S17. Emission intensity of probe H_2Vd (5×10⁻⁷ M) in the absence and in presence of Zn²⁺ as a function of pH values in aqueous solution at 467 nm.

Figure S18. UV-vis spectra of complex **1a** (5×10^{-7} M) in HEPES buffer (pH = 7.4) solution in the presence of various concentration of PPi (0, 1, 2, 3, 4 and 5) $\times 10^{-7}$ M.

Figure S19. Fluorescence spectra of complex **1a** $(5 \times 10^{-7} \text{ M})$ upon the addition of different anions (10 $\times 10^{-7} \text{ M}$) in HEPES buffer (pH = 7.4) solution.

Figure S20. Visual color change observed with the addition of various anions to complex 1a as seen under UV light ($\lambda = 365$ nm).

Figure S21. Job's plot for the identification of complex **1a-**PPi (1:1) complex stoichiometry using absorbance values at 368 nm.

Figure S22. Benesi–Hildebrand plot $1/(F_0 - F)$ vs. 1/[PPi] for complexation between complex **1a** and PPi derived from emission titration curve.

Figure S23. The limit of detection (LOD) of complex **1a** for PPi fluorescence responses (λ_{em} = 478 nm) as a function of PPi concentration.

Figure S24. Time–resolved fluorescence decay of H_2Vd in the absence and presence of added Zn^{2+} solution at 375 nm.

Figure S25. (A) Output signals (at 467 nm) of the logic gate in presence of different inputs. (B) The current signals of this logic gate in the presence of different inputs. (C) General representation of the symbol of an INHIBIT gate. (D) Corresponding truth table for two-input INHIBIT logic gate.

Table S8. Fluorescence lifetime measurement of chemosensor H_2Vd and the presence of Zn^{2+} in aqueous solution.

	ϕ_{f}	$\tau_{av}(ns)$	$\mathbf{K}_{\mathbf{r}}(\times 10^9) (\mathbf{S}^{-1})$	$\mathbf{K}_{\mathbf{nr}}(\times 10^9) \ (\mathbf{S}^{-1})$	χ2
H ₂ Vd	0.024	0.052	0.461	18.76	1.020
$H_2Vd + Zn^{2+}$	0.454	0.501	0.906	1.08	1.048

Different metal ions	Stability constant from absorption data (M ⁻¹)	Stability constant from fluorescence data (M ⁻¹)
Zn^{2+}	34.362×10^4	$31.647 imes 10^4$
Li ⁺	$1.287 imes 10^3$	1.355×10^{3}
Na ⁺	2.074×10^3	2.101×10^{3}
K ⁺	2.335×10^3	2.470×10^{3}
Ca ²⁺	2.402×10^{3}	2.343×10^3
Mg ²⁺	2.872×10^3	2.956×10^{3}
Mn ²⁺	1.919×10^3	1.861×10^{3}
Ba ²⁺	$2.018 imes 10^3$	2.143×10^{3}
Cu ²⁺	$1.598 imes 10^3$	1.712×10^{3}
Fe ²⁺	1.976×10^3	1.864×10^{3}
Cd ²⁺	$1.459 imes 10^4$	$1.501 imes 10^4$
Hg ²⁺	$1.387 imes 10^4$	1.410×10^4
Ni ²⁺	2.507×10^3	2.204×10^3
Pb ²⁺	2.970×10^{3}	2.883×10^3
Sr ²⁺	2.737×10^{3}	2.698×10^3
Co ²⁺	1.142×10^{3}	1.215×10^{3}
Cr ³⁺	2.031×10^3	2.243×10^3
Al ³⁺	$1.053 imes 10^4$	$1.102 imes 10^4$

Table S9. Stability constant was compared with complexation properties of the other metal ions.

Figure S26. Percentage (%) cell viability of Hela cells treated with different concentrations of H_2Vd for 24 hours determined by MTT assay.