Electronic Supporting Information

Enhanced catalytic activity and near room temperature gas sensing properties of SnO₂ nanoclusters@mesoporous Sn(IV) organophosphonate composite

Suchibrata Borah,^a Bagmita Bhattacharyya,^a Jumi Deka,^b Aditya Borah,^a Anuchaya Devi,^c Dhanapati Deka,^c Shashank Mishra,^d Kalyan Raidongia^b and Nayanmoni Gogoi*^a

Department of Chemical Sciences, Tezpur University, Tezpur, India, 784028

Email: <u>ngogoi@tezu.ernet.in</u>

Sl. No.	Solvent	Catalyst Amount (wt%)	% Yield
1	CH ₃ COCH ₃ :H ₂ O (1:1)	10	96
2	CH ₃ CN	10	21
3	C ₂ H ₅ OH	10	10
4	CH ₃ COCH ₃	10	~0
5	H ₂ O	10	~0

Table S1: Solvent optimization for deoximation reaction catalyzed by SnO₂@MSnP.

Table S2: Amount of catalyst optimization for deoximation reaction catalyzed by SnO₂@MSnP.

Sl. No	Solvent	Catalyst Amount (wt%)	% Yield
1	CH ₃ COCH ₃ :H ₂ O (1:1)	1.7	50
2	CH ₃ COCH ₃ :H ₂ O (1:1)	3.3	65
3	CH ₃ COCH ₃ :H ₂ O (1:1)	6.7	75
4	CH ₃ COCH ₃ :H ₂ O (1:1)	10	96

Table S3: Activity comparison with different catalysts taking acetophenone oxime as substrate

Sl. No.	Name	Catalyst Amount	% Yield
		(wt %)	
1	None	-	~0
2	Mesityl-1,3,5-tris	10	100
	(methylenephosphonic acid)		
3	SnCl ₄ .5H ₂ O	10	99
4	SnO ₂	10	55
5	Sn(IV)phenyl phosphonate	10	5
7	SnO ₂ @MSnP	10	96

Reaction	Temperature	Methanol	Catalyst	Conversion
Time (h)	°C	:oil ratio	used	(%)
			(wt%)	
0	60	6:1	2	~0
1	60	6:1	2	9.8
2	60	6:1	2	20.8
3	60	6:1	2	42.9

Table S4: SnO₂ as catalyst for esterification of free fatty acid.

Table S5: SnO₂@MSnP as catalyst for esterification of free fatty acid.

Reaction	Temperature °C	Methanol	Catalyst	Free fatty acid
Time (h)		:oil ratio	used	content (mg
			(wt%)	KOH/gm of oil)
0	60	6:1	2	~0
1	60	6:1	2	36.1
2	60	6:1	2	70.7
3	60	6:1	2	88.6

Figure S1: FT-IR spectrum of SnO₂@MSnP as KBr disc.

Figure S2: Thermogravimetric analysis spectrum of SnO₂@MSnP.

Figure S3: Small angle powder XRD spectrum of SnO₂@MSnP.

Figure S4: TEM-EDX image of SnO₂@MSnP.

Figure S5: BJH pore size distribution of SnO₂@MSnP.

Figure S6: Surface area analysis plot of SnO₂@MSnP.

Figure S7: The BET surface area of pristine SnO₂ nanoparticles

Figure S8: TEM images of pristine SnO₂ nanoparticles

Figure S9: UV-visible spectrum of SnO₂ and SnO₂@MSnP.

Figure S10: Fluorescence spectrum of SnO₂@MSnP.

Figure S11: The XPS spectra of Sn 3d regions of SnO₂@MSnP.

Figure S12: The XPS spectra of P 2p regions of SnO₂@MSnP.

Figure S13: The XPS spectra of C 1s regions of SnO₂@MSnP.

Figure S14: ¹³C MAS 12.5 KHz NMR spectrum of **SnO₂@MSnP**.

Figure S15: ³¹P MAS 12.5 KHz NMR spectrum of **SnO₂@MSnP**.

Figure S16: ¹¹⁹Sn MAS 12.5 KHz NMR spectrum of **SnO₂@MSnP**.

Figure S17: FT-IR spectrum of Mesityl-1,3,5-tris(methylenephosphonic acid) as KBr disc.

Figure S18: ¹H NMR spectra of *Mesityl-1,3,5-tris(methylenephosphonic acid)*.

Figure S19: ³¹P NMR spectra of *Mesityl-1,3,5-tris(methylenephosphonic acid)*.

Figure S20: ¹³C NMR spectra of *Mesityl-1,3,5-tris(methylenephosphonic acid)*.

Figure S21:¹H NMR of product 4.1.b. ¹H NMR (CDCl₃, 400MHz, δ ppm): 7.80-7.78 (d, ³J=7.12, 4H), 7.59-7.55(t, ³J=7.13, 2H), 7.49-7.45 (t, ³J=7.20, 4H).

Figure S22:¹³C NMR of 4.1.b. ¹³C NMR(CDCl₃, 100MHz, δ ppm): 196.7, 137.5, 132.4, 130.1, 128.3.

Figure S23: GC spectrum of product 1a from table 1.

Figure S24: Mass spectrum of product 1a from table 1.

Figure S25: GC spectrum of product 1b from table 1.

Figure S26: Mass spectrum of product 1b from table 1.

Figure S27: Mass spectrum of product 1c from table 1.

Figure S28: Mass spectrum of product 1e from table 1.

Figure S29: GC spectrum of product 1f from table 1.

Figure S30: Mass spectrum of product 1f from table 1.

Figure S31: GC spectrum of product 1g from table 1.

Figure S32: Mass spectrum of product 1g from table 1.

Figure S33: GC spectrum of product 1h from table 1.

Figure S34: Mass spectrum of product 1h from table 1.

Figure S35: GC spectrum of product 1i from table 1.

Figure S36: ¹H NMR of raw oil for esterification reaction.

Figure S37: ¹H NMR of product after esterification reaction.

Figure S38: Schematic representation of experimental set up for SnO₂@MSnP gas sensing.

Figure S39: Response curves of SnO₂@MSnP gas sensing device (a) and (b) towards NH₃ gas on 1st and 100th cycle of exposure, (c) IR spectra of SnO₂@MSnP sample recorded after completing gas sensing experiments (d) Powder X-ray diffraction pattern of SnO₂@MSnP sample recorded after completing gas sensing experiments.

Figure S40: Response curves of $SnO_2@MSnP$ gas sensing device towards nitrobenzene and ethanol vapors.