Supplementary material for:

Facile Activation of Alkynes with a Boraguanidinato-Stabilized

Germylene: A Combined Experimental and Theoretical Study.

Jiří Böserle, Grigory Zhigulin, Petr Štěpnička, Filip Horký, Milan Erben, Roman Jambor, Aleš Růžička, Sergey Ketkov,^{*}and Libor Dostál^{*}

Table of contents:

Table S1summarizing the crystallographic data	page S2
Computational results	page S3
Full reference to Gaussian 09 programpackage	page S12

	1a	1b	1c	2a
Chemical formula	$C_{48}H_{70}B_2Ge_2N_6$	$C_{58}H_{74}B_2Ge_2N_6$	$C_{52}H_{70}B_2Ge_2N_6$	$C_{56}H_{74}B_2FeGe_2N_6$
Cryst syst	monoclinic	monoclinic	triclinic	monoclinic
Space group	$P2_1/c$	P21/c	P-1	C2/c
	10,1640(12)	19.659(2)	15.3900(7)	52,0662(4)
$h[\mathring{\Delta}]$	21 9981(17)	10 8410(8)	18 312(2)	10 3231(2)
~[/,] <[Å]	23 169(3)	28 649(4)	36 856(5)	21 2294(4)
a[9]	20.105(3) QA	90	91 09 <i>1</i> (11)	90
B[0]	112 35/(12)	11/ 791(10)	97 193(5)	112 682(3)
v[o]	00	90	01 257(8)	112.082(J) 00
	50	30	91.237(0)	90
2 [mm ⁻¹]	4	4	0	0
μ [[]]]	1.293	1.126	1.206	1.449
D_x [ivig m]	1.245	1.225	1.220	1.330
Cryst size [mm]	0.59x0.4/x0.19	0.3/×0.21×0.15	0.48x0.19x0.11	0.46×0.23×0.11
θ range, [deg]	1-27.5	1-27.5	1-27.5	1-27.5
T _{min} , T _{max}	0.599, 0.837	0.820, 0.878	0.725, 0.884	0.703, 0.867
no. of reflns measd	34717	37747	150 941	97484
no. of unique reflns, R _{int}	10461, 0.037	12326, 0.064	46094, 0.074	12046, 0.053
no. of obsd reflns	8045	8407	29450	8940
no. of params	592	613	2224	604
S all data	3.191	1.131	1.100	1.153
final R indices [<i>I>2o(I)</i>]	0.042	0.050	0.067	0.044
wR2 indices (all data)	0.084	0.081	0.111	0.076
$\Delta \rho$, max., min. [e Å ⁻³]	0.805, -0.654	0.485, -0.506	0.938, -0.626	0.679, -0.684
	,		,	
	2c	3a	3b	4
Chemical formula	C ₆₂ H ₇₀ B ₂ FeGe ₂ N ₆ .	CeoH74B2Ge2Ne.	CraHaaBaGeaNa	C114H146B4FeGe4N13.6(C7
	С-H	05(C-H)	056118202002116	-114 140 4 4 12 - (-) H_)
Cruct out	C ₆ H ₁₄		monoclinic	Triclinic
Cryst syst				
space group	P-1 10 7500(0)	P21/C	PZ1/C	P-1 10.0020(0)
0[A]	10.7590(8)	22.5261(14)	11.15/9(/)	10.8838(8)
D[A]	14.9720(14)	13.2680(15)	19.2531(19)	16.8256(12)
C[A]	21.213(2)	21.209(2)	27.690(2)	19.8906(16)
α[°]	75.454(9)	90	90	77.578(3)
β[°]	78.047(8)	112.060(9)	110.450(6)	78.671(3)
γ[°]	85.108(7)	90	90	72.523(3)
Z	2	4	4	1
μ[mm ⁻⁺]	1.189	1.067	1.119	1.048
D_x [Mg m ⁻³]	1.249	1.231	1.199	1.299
Cryst size [mm]	0.39×0.33×0.16	0.52×0.32×0.18	0.39x0.17x0.13	0.161×0.073×0.073
Θ range, [deg]	1-26.5	1-27	1-27	1-26
T _{min} , T _{max}	0.748, 0.857	0.762, 0.878	0.6567, 0.7455	0.849, 0.927
no. of reflns measd	54709	50365	67651	54930
no. of unique reflns, R _{int}	13191, 0.095	12445, 0.065	12138, 0.060	11525, 0.088
no. of obsd reflns	9144	8543	8509	8415
no. of params	658	667	625	684
S all data				
	1.121	1.133	1.081	1,134
final R indices [I>2 $\sigma(I)$]	1.121 0.068	1.133 0.048	1.081 0.048	1.134 0.082
final R indices [<i>I>2o(I)</i>] wR2 indices (all data)	1.121 0.068 0.142	1.133 0.048 0.081	1.081 0.048 0.085	1.134 0.082 0.158
final R indices [<i>I</i> >2 σ (<i>I</i>)] wR2 indices (all data) $\Delta \rho$, max., min. [e Å ⁻³]	1.121 0.068 0.142 1.2390.896	1.133 0.048 0.081 0.600, -0.595	1.081 0.048 0.085 0.877, -0.586	1.134 0.082 0.158 0.9200.695

Table S1. Relevant crystallographic data for the studied compounds.

Definitions: $R_{int} = \sum |F_o^2 - F_{o,mean}| / \sum F_o^2$, $S = [\sum (w(F_o^2 - F_c^2)^2) / (N_{diffrs} - N_{params})]^{\frac{1}{2}}$ for all data, $R(F) = \sum |F_o| - |F_c| / \sum |F_o|$ for observed data, $wR(F^2) = [\sum (w(F_o^2 - F_c^2)^2) / (\sum w(F_o^2)^2)]^{\frac{1}{2}}$ for all data.

Computational results

Possible additional pathways of the 3,4-Me₂-1,2-digermacyclobut-3-ene (1a) formation

Complex **D3** can also be obtained from dimer **D1** found in the solid phase^{S1} (**D1** \rightarrow **D4** \rightarrow **D3**). However, in alkyne complex **D4** (Scheme S1) the Ge-C₂Me₂ interaction is weaker than that in intermediate **M2**, the averaged Ge-C distances are, respectively, 3.907 and 3.058 Å (Table S2). This is caused by mutual repulsion between the methyl groups of the Ge-containing fragment and the alkyne (Figure S2). On the other hand, the averaged Ge-C distance in dimer **D3** (3.014 Å) is close to that in **M2**. To form complex **D3** from **D4**, the C₂Me₂ fragment has to overcome the Me-Me repulsion which makes the **D1** \rightarrow **D4** \rightarrow **D3** \rightarrow **1a** pathway less favourable. The formation of the 3,4-R,R'-1,2-digermacyclobut-3-enes with more bulky substituents (**1b-e**, **2a-d**) also testifies to the preferable pathway via monomeric species **M2**. The **D1** \rightarrow **D5** stage (Scheme S1) leading to digermene is accompanied by an increase in both electronic and Gibbs energies ($\Delta E_{el} = 12.5$, $\Delta G = 3.5$ kcal mol⁻¹). Accordingly, no **D5** species are detected both in the crystal state and in solution.^{S1}

Furthermore, the insertion of the **M1** species into the Ge-N bond of another **M1** molecule can produce dimer **D6** (Scheme S1). The calculated solution-phase electronic energy of **D6** is 3.7 kcal mol⁻¹ higher than that of **D1**, but the **D1** \rightarrow **D6** ΔG value is only 1.3 kcal mol⁻¹ so the **D6** dimer might participate in the reactions leading to the **1a** product. The addition of C₂Me₂ to this dimer (**D6** \rightarrow **D7**) is endergonic (ΔG = 5.8 kcal mol⁻¹). Alternatively, the **D7** adduct can be obtained from the monomer **M2** with the ΔE_{el} = -18.6, ΔG = 2.7 kcal mol⁻¹ energy changes (Scheme S1).

The transformations of **D7** into the alkene complex **D8** and then to the product **1a** lead to a decrease of the free energy ($\Delta G = -8.4$ and $\Delta G = -18.4$ kcal mol⁻¹, respectively). The pathway involving the **D7** and **D8** species thus appears to be thermodynamically favoured. Moreover, the activation energy (ΔE_a) of the **D7** \rightarrow **D8** reaction is rather low (5.9 kcal mol⁻¹, Scheme S3). However, the **D8** \rightarrow **1a** transformation requires a substantial rearrangement of the molecular fragments including the Ge-N and Ge-C bond cleavages, ligand rotations and formations of new bonds.

In the course of a search for the corresponding transition state, additional stable intermediates **D9** - **D13** with electronic energies E_{el} lying between those of **1a** and **D7** (Figure S4) were found. The **D9** complex with the MeC=C and Me fragments coordinated to a Ge atom appears to have an even lower E_{el} value than **1a** (Table S3). The dimethylacetylene MeC=C-Me bond cleavage necessary for the formation of **D9** (**D7** \rightarrow **D9**) corresponds, however, to a high activation energy of 73.4 kcal mol⁻¹. This barrier prevents the formation of dimer **D9** in the germylene reaction with C₂Me₂. Our DFT analysis shows, therefore, that among the numerous possible mechanisms of the 3,4-Me₂-1,2-digermacyclobut-3-ene (**1a**) formation the **M1** \rightarrow **M2** \rightarrow **D3** \rightarrow **1a** pathway is energetically favourable. The gas-phase reaction parameters (Scheme S2) reveal similar trends and suggest the same mechanism.

QTAIM analysis of Ge-Ge bonding in D5 and 1a.

Like MO, NBO and ELF approaches, the QTAIM analysis also reveals large differences in the **D5** and **1a** Ge-Ge bonding. The electron density in the Ge-Ge (3, -1) critical point increases from 0.035 a.u. in **D5** to 0.078 a.u. in **1a** which agrees with the shorter **1a** interatomic distance. The corresponding

Laplacian value decreases from +0.006 to -0.064 a.u., respectively, whereas the ratio of the local potential-energy density and local kinetic-energy density $|V(\mathbf{r}_c)|/G(\mathbf{r}_c)$ increases from 1.778 to 2.938. The nature of bonding interactions can be classified according to the $|V(\mathbf{r}_c)|/G(\mathbf{r}_c)$ ratio at the bonding critical points.^{S1} Closed-shell interactions display $|V(\mathbf{r}_c)|/G(\mathbf{r}_c)$ values less than 1.0, intermediate interactions $1 < |V(\mathbf{r}_c)|/G(\mathbf{r}_c) < 2$ and covalent interactions $|V(\mathbf{r}_c)|/G(\mathbf{r}_c) > 2$. The observed changes suggest stronger covalent character of the Ge-Ge bond in **1a**.

References

S1. (a) E. Espinosa, I. Alkorta, J. Elguero and E. Molins, *J. Chem. Phys.*, 2002, **117**, 5529; (b) G. V. Gibbs, D. F. Cox, T. D. Crawford, K. M. Rosso, N. L. Ross and R. T. Downs, *J. Chem. Phys.*, 2006, **124**, 084704.

Table S2. Selected M06-2X/DGDZVP interatomic distances and bonding angles in the optimized structures of reactants, products, intermediates and transition states corresponding to the interaction between germylene $[(i-Pr)_2NB(N-2,6-Me_2C_6H_3)_2]Ge$ (**M1**)and C₂Me₂.

C	D	Bond lengths [Å]				Bonding angles [°]				
Compound	Phase	Ge-Ge	Ge-N	Ge-C	C=C	C≡C	C-Ge-Ge	C–C–Ge	C-Ge-C	C-C-CH ₃
	gas	2.442	1.864, 1.865; 1.868, 1.874	1.979, 1.980	1.357	_	73.94, 74.00	105.66, 105.69	_	126.92, 127.31
19	C ₆ H ₆	2.445	1.864, 1.869; 1.869, 1.877	1.978, 1.980	1.357	_	73.78, 74.09	105.58, 105.96	-	126.78, 127.21
M1	gas	-	1.886, 1.886	-	-	-	-	-	-	-
	C ₆ H ₆	-	1.885, 1.889	-	-	-	-	-	-	-
M2	gas	-	1.898, 1.903	2.993, 3.127	-	1.214	-	72.41, 84.85	22.75	177.58, 178.53
1112	C ₆ H ₆	_	1.899, 1.904	2.991, 3.124	_	1.215	_	72.47, 84.75	22.78	177.63, 178.53
	gas	_	1.864, 1.865	1.892, 1.892	1.364	_	_	68.86, 68.89	42.25	133.92, 133.93
М3	C ₆ H ₆	_	1.865, 1.866	1.891, 1.891	1.364	-	-	68.86, 68.87	42.28	133.98, 133.99
D1	gas	3.017	1.961, 2.125, 2.112; 1.961, 2.125, 2.112	_	_	-	-	_	_	-
	C ₆ H ₆	3.016	1.960, 2.126, 2.112; 1.960, 2.126, 2.111	-	-	-	-	-	-	-
50	gas	3.622	1.866, 1.869; 1.892, 1.892	1.889, 1.897; 3.873	1.364	-	-	68.56, 69.21	42.23	134.03 <i>,</i> 134.72
52	C ₆ H ₆	3.638	1.867, 1.870; 1.892, 1.894	1.888, 1.896; 3.882	1.364	-	_	68.54, 69.20	42.23	134.01, 134.71
D3	gas	2.918	1.898, 1.890; 1.885, 1.896	2.994, 3.033	-	1.214	-	76.61, 80.16	23.23	176.46, 179.00
20	C ₆ H ₆	2.923	1.897, 1.890; 1.885, 1.896	2.999, 3.042	-	1.214	-	76.43, 80.40	23.18	176.62, 178.96
D4	gas	3.013	1.965, 2.124; 1.965, 2.129	3.693, 3.997	-	1.212	-	66.85, 95.60	17.56	179.15, 179.29

	C.H.	3 014	1.963, 2.135;	3 753 4 060	_	1 212	_	66 83 95 90	17 27	179.07,
	Colle	5.014	1.965, 2.124	5.755, 4.000		1.212		00.03, 53.50	17.27	179.20
	gas	2.933	1.887, 1.905;	_	_	_	-	_	_	-
D5	Ū		1.869, 1.875							
	C ₆ H ₆	2.943	1.889, 1.907;	_	_	_	-	_	_	_
	-0 0		1.869, 1.874							
	gas	2.515	1.877, 1.891	_	_	_	-	_	_	_
D6	U		1.873; 1.873							
-	Calla	2 516	1.878, 1.892,	_	_	_	-	_	_	_
	C6116	2.510	1.874; 1.873							
	gas	2 5 2 7	1.888, 1.903,	2 842 2 965	_	1 215	_	72 32 83 65	24.03	177.24,
D7	803	2.527	1.887; 1.892	2.012, 2.303		1.215		, 2.52, 05.05	21.05	178.16
	Сене	2 5 2 7	1.889, 1.904,	2 818 2 943	_	1 2 1 6	_	72 09 83 67	24.24	176.65,
	00.10	2.027	1.888; 1.893	1010, 10 10		1.210		, co.o.		177.65
	gas	2 402	1.863, 1.876,	1 906 1 914	1 345	_	_	69.09.69.69	41 22	137.50,
08	803	2.102	1.859; 1.883	1.500, 1.511	1.515			03.03, 03.03	11.22	136.82
	C.H.	2 403	1.863, 1.876,	1 906 1 913	1 3/15	_	_	69 11 69 67	11 23	137.32,
	Corre	2.405	1.859; 1.884	1.500, 1.515	1.545			05.11, 05.07	41.25	136.83
D9	gas	2.422	1.879, 1.895,	1.930, 1.974	_	1.218	_	179.78	107.70	178.65
	0		1.870; 1.864	, -		_				
TS1		_	1.893, 1.898	2.018, 2.190	-	1.277	-	65.11, 79.88	35.02	146.31,
										153.30
TS2		2.702	1.874, 1.851;	1.861, 2.130;	1.357	-	46.78,	81.28, 126.03	-	126.11,
			1.891, 1.898	2.663			103.91			132.43
TS3		2.598	1.876, 1.883;	2.444, 2.495	_	1.253	71.38,	98.00, 104.88	_	151.64,
	gas		1.902, 1.905				72.68			156.16
TS4	643	2.431	1.876, 1.886,	2.075, 2.281	_	1.265	_	64.37, 82.27	33.35	155.06,
			1.870; 1.916							153.84
			1.891, 1.888,							176.53,
TS5		2.547	2.421; 1.856,	2.876, 3.026	-	1.216	-	71.27, 85.12	23.61	180.00
			2.384							

^a See Scheme 5 (Main Text) and Schemes S1 -S3 (Supporting Information) for the compound notations.

Compound	Structural formula	E _{el}	$\Delta E_{\rm el}$
	Dmp Me Me Dmp (i-Pr) ₂ N-B Ge-Ge B-N(i-Pr) ₂		
1a	Dmp Dmp	-6402.06096087	0
	Me Dmp / Me Dmp N Ge N / Ge B-N(/-Pr);		
D7	(<i>i-</i> Pr) ₂ N ^B N ^N N ⁻ Dmp Dmp	-6402.02870354	20.2
	Me Me Dmp Dmp Dmp N Ge N Se B-N(/-Pr)2		
D8	(<i>i-</i> Pr) ₂ N ⁻ B-N ⁻ N ⁻ Dmp Dmp	-6402.04470540	10.2
	Me Dmp ≣ Me Dmp N_Ge N.		
D9	(<i>i-</i> Pr)₂N B−N (<i>i-</i> Pr)₂ (<i>i-</i> Pr)₂N Dmp Dmp	-6402.06366861	-1.7
	Me Dmp Dmp Ge B-N(<i>i</i> -Pr) ₂		
D10	(<i>i-</i> Pr) ₂ N ^{−B−} N [−] Ň Dmp Dmp	-6402.03862449	14.0
	$(i-Pr)_2N$ $B \sim N$ Dmp Dmp Dmp N $Ge \sim Ge$ $B-N(i-Pr)_2$		
D11	Me Ne I Me Dmp	-6402.05455066	4.0
	(<i>i</i> -Pr) ₂ N B-N Dmp N GeGe B-N(<i>i</i> -Pr)-		
D12	Me Me Dmp	-6402.02640299	21.7
	Dmp Me Dmp N Me Dmp (<i>i</i> -Pr) ₂ N-B Ge-		
D13	Dmp Dmp	-6402.02487783	22.6

Table S3. Calculated electronic energies E_{el} (a.u.) of the **D7** - **D14** intermediates and their separations ΔE_{el} (kcal mol⁻¹) from the **1a** energy.

Scheme S1. Theoretical analysis of possible pathways of the interaction between germylene [(*i*-Pr)₂NB(N-2,6-Me₂C₆H₃)₂]Ge (**M1**) and C₂Me₂ in C₆H₆ solution. The calculated changes of the electronic energy ΔE and Gibbs free energy ΔG (in parentheses) are given in kcal mol⁻¹. The DFT-suggested favourable pathway (**M1** \rightarrow **M2** \rightarrow **D3** \rightarrow **1a**) is shown by the bold arrows.

Scheme S2. Theoretical analysis of possible pathways of the interaction between germylene [(*i*-Pr)₂NB(N-2,6-Me₂C₆H₃)₂]Ge (**M1**) and C₂Me₂ in the gas phase. The calculated changes of the electronic energy ΔE and Gibbs free energy ΔG (in parentheses) are given in kcal mol⁻¹. The DFT-suggested favourable pathway (**M1** \rightarrow **M2** \rightarrow **D3** \rightarrow **1a**) is shown by the bold arrows.

Scheme S3. Calculated activation energies ΔE_a and Gibbs free energies of activation $\Delta^{\dagger}G$ (in parentheses) for the **D7** \rightarrow **D8** (left) **and D7** \rightarrow **D3** (right) stages of interaction between germylene [(*i*-Pr)₂NB(N-2,6-Me₂C₆H₃)₂]Ge (**M1**) and C₂Me₂ in the gas phase. The energy values are given in kcal mol⁻¹.

Figure S1:The donor-acceptor interactions responsible for the Ge---C₂Me₂ bonding in **M2** (left) and for Ge-Ge bonding in **D3** (right) revealed by NBO analysis. Hydrogen atoms are omitted for clarity. The NBO isosurfaces correspond to the 0.1 isovalue. For the **D3** molecule, there is also a similar donor-acceptor interaction involving the lone pair of Ge2 and empty p orbital of Ge1. The corresponding energies obtained from the second order perturbation theory analysis of the Fock matrix in the NBO basis (kcalmol⁻¹) are shown on the arrows.

Figure S2: Optimised geometry of molecule**D4** in C₆H₆ solution.

Figure S3. Isosurfaces (isovalue 0.05) of the frontier molecular orbitals of molecule **D3**. Hydrogen atoms are omitted for clarity.

Figure S4. Structures of the D9 - D13 intermediates identified by the DFT calculations.

Full reference to the Gaussian 09 program package:

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, *Gaussian 09, Revision B.01*, Gaussian, Inc., Wallingford CT, 2010.