Supporting Information

Synthesis and Fluorescence Spectroscopy of Tris(pyrenyl) Pnictogen Compounds

Kira Behm, Jeremy B. Essner, Charles L. Barnes, Gary A. Baker, and Justin R. Walensky

Department of Chemistry, University of Missouri, Columbia, MO 65211

Table of Contents

Table S1.	Calculated solution concentrations and excitation/emission	n wavelengths monitored2	2
Table S2.	Extinction coefficients at the indicated wavelengths		2

Table S3. Reference fluorophore used to determine quantum yield (Φ) values......2

Compound	Concentration (µM)	Excitation Wavelengths (nm)	Emission Wavelengths (nm)
Ру	12.5	325, 333	373, 379, 384, 393, 410
$P(Py)_3$	10.5	325, 333, 350, 375	381, 400, 422, 450, 500
OP(Py) ₃	11.2	Same as above	Same as above
SP(Py) ₃	10.2	325, 333, 350	381, 400, 434, 450, 500
As(Py) ₃	11.0	325, 333, 350, 375	380, 399, 422, 450, 500
OAs(Py) ₃	11.0	Same as above	379, 399, 419, 487, 525
Sb(Py) ₃	10.9	325, 333, 350	385, 406, 434, 450
Bi(Py) ₃	10.9	325, 333, 350, 375, 400	385, 406, 430, 450, 500

 Table S1. Calculated solution concentrations and excitation/emission wavelengths monitored.

 Table S2. Extinction coefficients at the indicated wavelengths.

Compound	λ(nm)	ε (M ⁻¹ cm ⁻¹)	λ(nm)	ε (M ⁻¹ cm ⁻¹)
Ру	320	22948	335	38949
$P(Py)_3$	348	57684	364	67767
OP(Py) ₃	347	74806	363	101857
SP(Py) ₃	353	64560	367	71591
As(Py) ₃	344	57214	361	73108
OAs(Py) ₃	344	45495	360	64822
Sb(Py) ₃	342	77078	360	117110
Bi(Py) ₃	338	84570	356	132628

Table S3. Reference fluorophore used to determine quantum yield (Φ) values.

Fluorophore	Excitation Wavelength (nm)	Solvent	n ^a	Φ(%)	Ref.
Quinine sulfate	350	0.1 M H ₂ SO ₄	1.343	57.7	1
a refrective in dev					

^{*a*} refractive index.

Figure S1. (A–E) Images of pyrene (Py; 12.5 μ M) and the indicated compounds (~11 μ M) showing their fluorescence emission under UV excitation (325 nm) using a He-Cd laser (illumination occurs from the left side). Panels A and B are of the same three compounds with the 2nd and 4th vials reversed to better show the fluorescence of SP(Py)₃. The same is the case for panels D and E to better illustrate the fluorescence of Sb(Py)₃.

Figure S2. Normalized (A) absorbance and steady-state (B) emission and (C) excitation spectra of pyrene (12.5 μ M) dissolved in methanol, monitored at the wavelengths indicated within the legends of (B) and (C). The emission and excitation spectra were normalized to the highest energy emission peak.

Figure S3. Normalized (A) absorbance and steady-state (B) emission and (C) excitation spectra of Sb(Py)₃ (10.9 μ M) dissolved in DCM. The absorbance of free pyrene (12.5 μ M in MeOH) is also provided in panel A as a benchmark. The emission and excitation spectra were monitored at the wavelengths indicated within the legends of (B) and (C), normalizing to the highest energy emission peak. The quantum yield, calculated at 350 nm excitation, was found to be 0.14%.

Figure S4. Normalized (A) absorbance and steady-state (B) emission and (C) excitation spectra of Bi(Py)₃ (10.9 μ M) dissolved in DCM. The absorbance of free pyrene (12.5 μ M in MeOH) is also provided in panel A as a benchmark. The emission and excitation spectra were monitored at the wavelengths indicated within the legends of (B) and (C), normalizing to the highest energy emission peak. The quantum yield, calculated at 350 nm excitation, was found to be 0.44%.

Figure S5. Absorbance (left y-axis) and normalized steady-state emission and excitation (right y-axis) spectra of (A) $P(Py)_3$, (B) $OP(Py)_3$, (C) $SP(Py)_3$, (D) $As(Py)_3$, (E) $OAs(Py)_3$, (F) $Sb(Py)_3$, and (G) $Bi(Py)_3$ compared to the spectra of pyrene. All emission spectra were monitored under 333 nm excitation while the excitation spectra were monitored at the emission band nearest to 400 nm (the exact wavelengths monitored are indicated within the legends). All fluorescence spectra were normalized to the highest energy emission peak. The quantum yields of each compound are indicated within their respective panel.

P(C₁₆H₉)₃, 1

As(C₁₆H₉)₃, 2

11

Sb(C₁₆H₉)₃, 3

Bi(C₁₆H₉)₃, 4

OP(C₁₆H₉)₃, 5

SP(C₁₆H₉)₃, 6

OAs(C₁₆H₉)₃, 7

References

1. Lakowicz, J. R., *Principles of Fluorescence Spectroscopy*. Springer: 2007.