Electronic Supplementary Information (ESI[†])

UV-induced single-crystal-to-single-crystal conversion from a coordination ladder to a two-dimensional network through intermolecular carbon-carbon coupling reaction

Jing-Min Chen, Yi-Xuan Hou, Qian-Kun Zhou, Hao Zhang and Dong Liu*

Key Laboratory of Energetic Materials of Anhui Province, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, P. R. China.

*E-mail: dongliu@chnu.edu.cn

Table of Contents

Experimental Section S3
General procedure
Preparation of $[Cd_2(\mu-OH_2)_2(2,5-fdc)_2(2,3'-bpe)_2]_n$ (1)
Preparation of $[Cd_2(\mu-OH_2)_2(2,5-fdc)_2(bpbpcb)]_n$ (2)
Isolation of 1,3-bis(2-pyridyl)-2,4-bis(3-pyridyl)cyclobutane (bpbpcb)
X-ray diffraction crystallography
Table S1 Summary of Crystallographic Data for 1 and 2
Table S2 Selected Bond Lengths (Å) and Angles (°) for 1 and 2 ······S6
Fig. S1 PXRD patterns of 1 and 2 ·····S8
Fig. S2 The TGA curves for 1 and 2·····S9
Fig. S3 Optical micrographs for 1 and 2
Fig. S4 The ¹ H NMR spectrum of bpbpcb ······S10
References ······S10

Experimental Section

General procedure. The ligand 1-(2-pyridyl)-2-(3-pyridyl)-ethylene (2,3'-bpe) was prepared as reported previously.¹ Other reagents were purchased from TCI Co., Ltd., and Sigma-Aldrich Co. All the chemicals were used without any further purification. Infrared (IR) samples were prepared as KBr pellets, and spectrum was obtained in the 4000–400 cm⁻¹ range using a Nicolet Avatar 360 FT-IR spectrophotometer. The elemental analyses for C, H and N were performed on an EA1110 CHNS elemental analyzer. PXRD patterns were obtained using a PANalytical X'Pert PRO MPD system (PW3040/60). Thermal analysis were performed with a Perkin_Elmer TGA-7 thermogravimetric analyser at a heating rate of 10 °C/min and a flow rate of 100 cm³/min (N₂). ¹H NMR spectra were recorded at ambient temperature on a Bruker ADVANCE III (400MHz) spectrometer. UV-vis absorption spectra were obtained with a Shimadzu UV-3600 spectrophotometer. The fluorescence spectra were obtained on a JASCO FP-8600 spectrofluorometer.

Preparation of $[Cd_2(\mu-OH_2)_2(2,5-fdc)_2(2,3'-bpe)_2]_n$ (1). To a 50 mL Teflon-lined autoclave was loaded Cd(NO₃)₂·4H₂O (0.308 g, 1 mmol), 2,5-H₂fdc (0.156 g, 1 mmol), 2,3'-bpe (0.182 g, 1 mmol), NaOH solution (2 mL, 1 mol·L⁻¹) and H₂O (25 mL). The Teflon-lined autoclave was sealed and heated in an oven to 150°C for two days, and then cooled to ambient temperature at a rate of 5°C h⁻¹ to form colorless block crystals of **1**. Yield: 0.383 g (82% yield based on Cd). Anal. calcd. for C₃₆H₂₈Cd₂N₄O₁₂: C, 46.32; H, 3.02; N, 6.00. Found: C, 46.04; H, 2.87; N, 5.91. IR (KBr, cm⁻¹): 3431m, 1602s, 1558s, 1509w, 1411s, 1328s, 1294m, 1261m, 1220m, 1124w, 1025m, 964s, 870m, 820s, 696s, 545s, 458m. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.85 (s, 2H), 8.61 (d, *J* = 4.0 Hz, 2H), 8.51 (d, *J* = 4.4 Hz, 2H), 8.13 (d, *J* = 8.0 Hz, 2H), 7.83 (t, 2H), 7.71 (d, *J* = 16.0 Hz, 2H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.45 (t, 4H), 7.30 (s, 6H).

Preparation of $[Cd_2(\mu-OH_2)_2(2,5-fdc)_2(bpbpcb)]_n$ (2): Single crystals of 1 (0.187 g) were irradiated by a 20W LED lamp ($\lambda_{em} = 365$ nm) for approximately 4 h to form crystals of 2 in quantitative yield (based on 1). Anal. calcd. for $C_{36}H_{28}Cd_2N_4O_{12}$: C, 46.32; H, 3.02; N, 6.00. Found: C, 46.58; H, 3.11; N, 6.22. IR (KBr, cm⁻¹): 3430m, 1599s, 1559s, 1507w, 1410s, 1325s, 1296m, 1262m, 1221m, 1126w, 1026m, 966s, 868m, 818s, 695s, 547s, 455m. ¹H NMR (400 MHz, d_6 -DMSO): δ 8.42 (t, 4H), 8.21 (d, J = 4.4 Hz, 2H), 7.55 (m, 4H), 7.14 (m, 4H), 7.05 (t, 2H), 4.91 (t, 2H), 4.75 (t, 2H).

Isolation of 1,3-bis(2-pyridyl)-2,4-bis(3-pyridyl)cyclobutane (bpbpcb): A mixture of disodium ethylenediaminetetraacetate dihydrate (Na₂H₂edta·2H₂O, 0.186 g, 0.5 mmol), NaOH (0.040 g, 1 mmol), H₂O (15 mL), CH₂Cl₂ (15 mL) and **2** (0.141 g, 0.15 mmol) were placed in a 100 mL flask and stirred for 2 h. The organic phase was separated from the reaction mixture and the aqueous layers were extracted with CH₂Cl₂ (3 x 15 mL). The combined organic phase was washed with NaOH solution and H₂O, and dried with anhydrous Na₂SO₄. Finally, the organic phase was concentrated to dryness in vacuo to give bpbpcb as colorless powder. Yield: 0.049 g (90% yield based on **2**). IR (KBr, cm⁻¹): 3179m, 1586s, 1569s, 1472s, 1424s, 1293m, 1212m, 1023m, 992m, 961m, 818m, 753s, 532m. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.42 (t, 4H), 8.21 (d, *J* = 3.6 Hz, 2H), 7.55 (m, 4H), 7.14 (m, 4H), 7.05 (t, 2H), 4.91 (t, 2H), 4,76 (t, 2H).

X-ray diffraction crystallography: All measurements were collected on a Bruker SMART APEX II CCD diffractometer equipped with graphite-monochromated Mo-K α ($\lambda = 0.71073$ Å) by using the Φ/ω scan technique. Absorption correction was based on symmetry equivalent reflections using the SADABS program. Single crystals of **1** and **2** suitable for X-ray analysis were obtained directly from the above preparations. The crystal structures of **1** and **2** were solved by direct methods and refined on F^2 by full-matrix least-squares methods with the *SHELXL-2014* program.² All non-hydrogen atoms refined anisotropically. The H atoms of the water molecules in **1** and **2** were located from the Fourier map and included in the final refinement by use of geometrical restraints with the O–H distances being fixed at 0.85 Å and $U_{iso}(H)$ equivalent to 1.5 times of $U_{eq}(O)$. All other H atoms were introduced at the calculated positions and included in the structure-factor calculations.

Compound	1	2
chemical formula	$C_{36}H_{28}Cd_2N_4O_{12}\\$	$C_{36}H_{28}Cd_2N_4O_{12}\\$
formula weight	933.44	933.44
crystal system	triclinic	triclinic
space group	PError!	PError!
<i>a</i> (Å)	9.1726(18)	8.8826(18)
<i>b</i> (Å)	13.801(3)	14.431(3)
<i>c</i> (Å)	14.975(3)	14.620(3)
α (°)	96.69(3)	96.59(3)
β (°)	92.67(3)	93.46(3)
γ (°)	98.02(3)	99.33(3)
$V(Å^3)$	1860.6(7)	1831.1(7)
Ζ	2	2
$D_c (g/cm^3)$	1.666	1.693
F(000)	928	928
μ (MoKa,cm ⁻¹)	1.210	1.230
total no. of reflns	29965	30316
no. of unique reflns	8450	8340
no. of obsd. reflns	487	487
Rint	0.0374	0.0269
R_1^a	0.0543	0.0464
wR ₂ ^b	0.1403	0.1160
GOF^c	1.079	1.131

 Table S1 Summary of Crystallographic Data for 1 and 2.

^{*a*} $R = \sum ||F_0| - |F_c|| / \sum |F_0|$. ^{*b*} $wR = \{\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2\}^{1/2}$. ^{*c*} $GOF = \{\sum w[(F_0^2 - F_c^2)^2] / (n-p)\}^{1/2}$, where *n* is the number of reflections and *p* is total number of parameters refined.

		1		
Cd(1)-O(8A)	2.219(4)	Co	d(1)-O(11)	2.273(4)
Cd(1)-O(1)	2.326(4)	Co	d(1)-N(1)	2.379(5)
Cd(1)-N(2B)	2.389(4)	Co	d(1)-O(2)	2.570(4)
Cd(2)-O(3)	2.242(4)	Co	d(2)-O(12)	2.262(4)
Cd(2)-O(7)	2.287(4)	Co	d(2)-N(3)	2.367(5)
Cd(2)-N(4C)	2.382(5)			
O(8A)-Cd(1)-O(11)	126.07(15)	O	(8A)-Cd(1)-O(1)	96.33(14)
O(11)-Cd(1)-O(1)	137.55(15)	O	(8A)-Cd(1)-N(1)	93.04(17)
O(11)-Cd(1)-N(1)	94.96(18)	O	(1)-Cd(1)-N(1)	83.52(17)
O(8A)-Cd(1)-N(2B)	86.82(16)	O	(11)-Cd(1)-N(2B)	89.93(17)
O(1)-Cd(1)-N(2B)	90.56(17)	N	(1)-Cd(1)-N(2B)	174.02(18)
O(8A)-Cd(1)-O(2)	146.38(14)	O	(11)-Cd(1)-O(2)	84.76(14)
O(1)-Cd(1)-O(2)	53.73(13)	N	(1)-Cd(1)-O(2)	97.58(15)
N(2B)-Cd(1)-O(2)	79.42(15)	O	(3)-Cd(2)-O(12)	124.39(15)
O(3)-Cd(2)-O(7)	97.83(15)	O	(12)-Cd(2)-O(7)	137.62(16)
O(3)-Cd(2)-N(3)	94.46(17)	O	(12)-Cd(2)-N(3)	93.40(18)
O(7)-Cd(2)-N(3)	85.99(16)	O	(3)-Cd(2)-N(4C)	85.77(17)
O(12)-Cd(2)-N(4C)	90.87(18)	O	(7)-Cd(2)-N(4C)	88.69(17)
N(3)-Cd(2)-N(4C)	174.66(17)			

Table S2 Selected Bond Lengths (Å) and Angles (°) for 1 and 2.

2

Cd(1)-O(6)	2.241(3)	Cd(1)-O(11)	2.251(4)

2.304(4)	Cd(1)-N(1)	2.376(4)
2.381(4)	Cd(1)-O(1)	2.597(4)
2.262(4)	Cd(2)-O(12)	2.264(4)
2.367(4)	Cd(2)-O(8)	2.381(4)
2.386(4)	Cd(2)-O(9)	2.493(4)
120.07(15)	O(6)-Cd(1)-O(2)	98.26(13)
141.51(14)	O(6)-Cd(1)-N(1)	95.51(14)
89.28(16)	O(2)-Cd(1)-N(1)	90.44(14)
84.42(14)	O(11)-Cd(1)-N(2A)	93.69(16)
86.23(14)	N(1)-Cd(1)-N(2A)	176.61(14)
145.64(13)	O(11)-Cd(1)-O(1)	89.19(13)
53.49(12)	N(1)-Cd(1)-O(1)	102.97(13)
75.47(13)	O(4B)-Cd(2)-O(12)	124.39(14)
92.92(15)	O(12)-Cd(2)-N(3)	98.75(15)
93.11(13)	O(12)-Cd(2)-O(8)	142.37(13)
80.54(14)	O(4B)-Cd(2)-N(4C)	86.49(14)
86.66(15)	N(3)-Cd(2)-N(4C)	173.77(15)
93.29(15)	(4B)-Cd(2)-O(9)	145.49(13)
88.61(13)	N(3)-Cd(2)-O(9)	91.34(14)
53.95(12)	N(4C)-Cd(2)-O(9)	85.69(14)
	2.304(4) 2.381(4) 2.262(4) 2.367(4) 2.386(4) 120.07(15) 141.51(14) 89.28(16) 84.42(14) 86.23(14) 145.64(13) 53.49(12) 75.47(13) 92.92(15) 93.11(13) 80.54(14) 86.66(15) 93.29(15) 88.61(13) 53.95(12)	2.304(4)Cd(1)-N(1)2.381(4)Cd(1)-O(1)2.262(4)Cd(2)-O(12)2.367(4)Cd(2)-O(8)2.386(4)Cd(2)-O(9)120.07(15)O(6)-Cd(1)-O(2)141.51(14)O(6)-Cd(1)-N(1)89.28(16)O(2)-Cd(1)-N(1)84.42(14)O(11)-Cd(1)-N(2A)84.23(14)N(1)-Cd(1)-N(2A)145.64(13)O(11)-Cd(1)-O(1)53.49(12)N(1)-Cd(1)-O(1)75.47(13)O(4B)-Cd(2)-O(12)92.92(15)O(12)-Cd(2)-N(3)93.11(13)O(12)-Cd(2)-N(4C)86.66(15)N(3)-Cd(2)-N(4C)84.61(13)N(3)-Cd(2)-O(9)88.61(13)N(4C)-Cd(2)-O(9)

Symmetry codes: (1) A: *x* + 1, *y* + 1, *z* + 1; B: - *x* + 1, - *y* + 1, - *z* + 1; C: - *x*, - *y*, - *z*. (2) A: *x* + 1, *y*, *z*; B: *x* + 1, *y* + 1, *z* + 1; C: *x* - 1, *y*, *z*.

Fig. S1 (a) PXRD pattern of **1** (from single crystal data: red; as-synthesis: black). (b) PXRD pattern of **2** (from single crystal data: red; as-synthesis: black).

Fig. S2 The TGA curves for **1** and **2**. For **1**, a minor weight loss of two coordinated water molecules per formula unit (obsd, 4.12%; calcd, 3.86%) occurred from 181 to 250 °C. Then the framework gradually collapsed. The remaining weight of the CdO residue is 27.86% (calcd. 27.51%). The TGA curve of **2** displays a first weight loss of 3.68% at 182-248 °C, corresponding to the loss of two coordinated water molecules per formula unit (calcd. 3.86%). Then the framework began to decompose, accompanied by the release of organic ligands. Finally, the remaining weight (obsd, 27.16%) indicated the CdO residue (calcd. 27.51%).

Fig. S3 Optical micrographs of single crystals before (a) and after (b) photoreaction.

Fig. S4 The ¹H NMR spectrum of bpbpcb.

References:

B. R. Bhogala, B. Captain, A. Parthasarathy and V. Ramamurthy, J. Am. Chem. Soc., 2010,
 132, 13434.

2 (a) G. M. Sheldrick, *SHELXL-2014, Program for Crystal Structure Refinement*, University of Göttingen, Göttingen, Germany, 2014; (b) A. L. Spek, *Acta Crystallogr., Sect. D: Biol. Crystallogr.* 2009, **65**, 148.