Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Supplementary information

Ru-based CO releasing molecules with azole ligands: interaction with proteins and CO release mechanism disclosed by X-ray crystallography

Nicola Pontillo, [‡] Giarita Ferraro, [‡] Luigi Messori, [#] Gabriella Tamasi, [†] Antonello Merlino[‡], ^{*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b00000

CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 3.1) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS

Ru ^{II} MBI struct	ures						
	HEWL-Ru ^{II} IM	HEWL-Ru ^{II} IM	HEWL- Ru ⁿ MIM	HEWL- Ru ⁿ MIM	RNase A- Ru ^{II} IM	RNase A- Ru ¹¹ MIM	RNase A- Ru ^{II} MBI
	First structure	Second structure	Crystals grown using NaCl	Crystals grown using ethylene glycol			
PDB code							
Crystallizatio n conditions	1.1M NaCl, 0.1 M sodium acetate pH 4.4	1.1M NaCl, 0.1 M sodium acetate pH 4.0	1.1M NaCl, 0.1 M sodium acetate pH 4.0	20% Ethylene glycol, 0.1 M sodium acetate pH 4.0, 0.6 M sodium nitrate	18% PEG4K, 10 mM sodium citrate pH 5.1 Soaking: 4 days Ligand concentratio n: 5 mM	22% PEG4K, 10 mM sodium citrate pH 5.1 Soaking: 14 days Ligand concentration: 5 mM	22% PEG4K, 10 mM sodium citrate pH 5.1 Soaking: 3 days Ligand concentration : 5 mM
Space group	P4 ₃ 2 ₁ 2	C2	C2	C2			
Unit cell param	neters						
a,b,c (Å)	79.78, 79.78, 36.64	78.97, 78.97, 36.60	78.57, 78.57, 36.66	77.74, 77.74, 37.17	100.55, 32.67, 74.69	99.63, 32.77, 72.25	100.65, 32.98, 73.05
β (°)	90.0	90.0	90.0	90.0	90.5	90.0	90.2
Molecules per asymmetric unit	1	1	1	1	2	2	2
Observed reflections	51100	20497	46898	18791	46153	36034	50056
Unique reflections	9931	6694	9488	4846	14981	15576	21285
Resolution	56 41-1 88	55 84-2 10	55 56-1 85	54 97-2 38	74 68-2 07	72 25-1 98	73 05-1 82

CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 3.1) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS

ARTICLE TYPE

www.rsc.org/xxxxxx | XXXXXXXX

(Å)	(1.01.1.99)	(214210)	(1 00 1 05)	(2 42 2 28)	(2 11 2 07)	(2.01, 1.08)	(1.95, 1.92)
(A)	(1.91-1.88)	(2.14-2.10)	(1.88-1.85)	(2.42-2.38)	(2.11-2.07)	(2.01-1.98)	(1.85-1.82)
Completenes s (%)	98.2 (100)	93.3 (93.3)	92.3 (86.3)	98.1 (97.9)	99.0 (94.2)	92.2 (81.9)	97.6 (95.4)
Rmerge†	0.091 (0.597)	0.057 (0.296)	0.048 (0.603)	0.099 (0.691)	0.085 (0.548)	0.103 (0.448)	0.072 (0.384)
Ι/σ(Ι)	13.3 (2.7)	11.4 (4.2)	36.8 (2.3)	15.6 (2.3)	9.5 (2.0)	8.2 (2.2)	6.3 (1.7)
Multiplicity	5.1 (3.2)	3.1 (2.8)	4.9 (3.0)	3.9 (3.6)	3.1 (2.5)	2.3 (1.7)	2.4 (1.4)
Refinement							
Resolution (Å)	56.41-1.88	55.84-2.10	55.56-1.85	54.97-2.38	74.68-2.07	72.251.98	73.051.82
number of reflections in working set	9428	6307	8981	4597	14224	14790	20184
number of reflections in test set	477	310	457	228	755	785	1091
R factor/Rfree (%)	17.5/24.2	15.3/23.4	16.0/23.2	18.8/30.8	18.1/27.2	17.6/27.9	16.5/23.6
Number of non-H atoms	1256	1234	1201	1147	2139	2385	2423
Number of Ru containing fragments	5	3	2	2	3	2	2
Occupancy of Ru atoms	0.8/0.5/0.3- 0.3/0.3/0.5/0.3	0.8/0.5/0.3	0.8/0.4	0.4/0.6	0.4/0.4/0.6	0.7/0.7	0.6/0.5
B-factor of Ru atoms	38.6/54.8/52.1- 52.5/58.5/50.0	44.2/51.0/46.4	43.4/56.7	55.1/49.1	54.4/52.7/52. 8	51.5/61.8	44.0/58.8
Overall B- factor	32.20	33.79	33.26	40.28	42.10	30.53	30.82
Ramachandran	values (%)						
Preferred/ Allowed/Outl	97.2/2.8/0.0	97.2/2.8/0.0	97.5/2.5/0.0	96.1/3.9/0.0	95.8/3.4/0.8	92.3/5.0/2.7	95.1/2.2/2.7

ARTICLE TYPE

www.rsc.org/xxxxxx | XXXXXXXX

iers							
R.m.s.d. bonds(Å)	0.021	0.016	0.023	0.013	0.014	0.015	0.016
R.m.s.d. angles(°)	1.87	1.674	1.913	1.626	1.726	1.626	1.771

Table	S2. Detail	s of the s	tructure	s of Ru	CORM	s-HEWL adduc	cts.				
	HEWL-	HEWL-	HEWL	HEWL	HEWL	HEWL-	HEWL	HEWL	HEWL	HEWL	HEW
	$[Ru(CO)_3]$ $Cl_2]_2$	$[Ru(CO)_3]$ $Cl_2]_2$	- rutheni	- rutheni	- rutheni	$\begin{bmatrix} Ru(CO)_3Cl_2H_2NC \\ H_2CO_2 \end{bmatrix}$	- Ru ^{II} IM	- Ru ¹¹ IM	- Ru ^{II} MI	- Ru ^{II} MI	L- Ru ^{II} M
	Creatinh	Create	um	um	um	3			М	М	BI
	ed crystals	linked	CORM	CORM	CORM						
		crystals	with a methio	with a pyridin	with a pyridin						
		-followed	ne	e	e						
		by the reaction in	ligand	(7)	(8)						
		deoxy-									
		n solution					First structu	Second structu	Crystal	Crystal	
							re	re	s grown	s grown	
									NaCl	ethylen	
										e glycol	
PDB code	4W94	4W96	4UWN	4UWU	4UWV	2XJW					5E9R
Peferenc	Pafaranca	Pafaranca	Pafara	Pafara	Pafara	Pafarance 15 of the	This	This	This	This	Pafara
e	13 of the	13 of the	nce 15	nce 15	nce 15	main text	work	work	work	work	nce 18
	main text	main text	of the main	of the main	of the main						of the main
			text	text	text						text
Resoluti	1.55	1.50	1.67	1.78	1.77	1.67	1.88	2.10	1.85	2.38	2.25
	10.0/20.0	10.5/22.7	16.6/01	16.1/10	10.1/22	16.0/20.0	17.5/04	15 4/22	1.6.0/22	10.0/20	22.7/1
Rfactor/ Rfree(%)	18.2/22.2	19.5/22.7	.2	.5	.2	16.9/20.8	2	15.4/23.	16.0/22. 9	18.8/30. 8	23.//1 5.2
	Ru (Occupan	Ru (Occupan	Ru (Occup	Ru (Occup	Ru (Occup	Ru (Occupancy:	Ru (Occupa	Ru (Occupa	Ru (Occupa	Ru (Occupa	Ru (Occu
	cy;	cy;	ancy;	ancy;	ancy;	B-factor $(Å^2)$)	ncy;	ncy;	ncy;	ncy;	pancy;
	(Å ²))	(Å ²))	B- factor	B- factor	B- factor	Ru ligands	$(Å^2))$	$(Å^2))$	$(Å^2))$	$(Å^2))$	factor
	Ru	Ru	(Å ²))	(Å ²))	(Å ²))	Axial	Ru	Ru	Ru	Ru	(Å ²))
	ligands	ligands	Ru	Ru	Ru	Equal.	ligands	ligands	ligands	ligands	Ru
	Axial Equat.	Axial Equat.	Axial	ligands Axial	ligands Axial		Axial Equat.	Axial Equat.	Axial Equat.	Axial Equat.	ligand s
		-	Equat.	Equat.	Equat.				_	_	Axial Equat
L 12	Du										Equili
Lysis	Ku (0.20)										
11:15	(0.30; 29.3)	D		D			D	D	P	P	
His15	Ru	Ru	Ku	Ru	Ru		Ru	Ru	Ru	Ru	Ru
	(0.75; 39.4)	(0.70; 38.2)	(1.00; 38.2)	(0.80; 27.3)	(0.70; 49.5)		(0.8; 38.6)	(0.8; 44.3)	(0.8; 43.4)	(0.5; 55.1)	(0.8; 46.2)
	со	со	Wat	Wat	Wat		со	со	со	Wat	со
	со	со	со	со	со		со	со	со	со	со
	Wat	Wat	Wat	СООН	Wat		со	со	со	со	Cl
	Cl	Cl	Wat	Wat	Wat		Wat	Cl	Wat	Wat	Wat
	Cl	Cl	Wat	Wat	Wat		Wat	Wat	Cl	x	Wat
							Anomal	Anomal	Anomal	Anomal	
							ous	ous	ous	ous	
1	1		1				peak:	peak:	peak:	peak:	1

www.rsc.org/xxxxxx | XXXXXXXX

								rmsd, e ⁻ /Å ³				
								10.8; 0.24	5.4; 0.27	4.2; 0.20	3.1; 0.13	
A 10	D	P	D	D	D			0.2 ·	D.27	0.20	0.12	
Asp18	KU	KU	ки	Ки	ки			Ки	Ки	ки		
	(0.5; 25.7)	(0.5; 29.5)	(0.65; 32.6)	(0.50; 23.1)	(0.50; 41.7)			(0.5; 54.8)	(0.5; 51.0)	(0.4; 56.7)		
			Wat	Wat	Wat				Wat	Wat		
	CO		со	Wat	со			Wat	СО	со		
	Cl	Ru (0.5; 28.1)	Wat	Wat	CO			CO	со	Wat		
	Cl	Cl	Wat	, vi at	Wat			Wat	Wat	Wat		
			Wat		Wat			Wat	Wat	Wat		
	Ru			Pu	,, at			Wat		,, ut		
	(0.5; 27.9)			Ku (0.50								
	со			(0.50; 25.4)								
	СО			Wat								
	Wat			Wat								
	Cl			Wat								
								Anomal	Anomal	Anomal		
								ous peak:	ous peak:	ous peak:		
								rmsd, e ⁻ /Å ³	rmsd, e ⁻ /Å ³	rmsd, e ⁻ /Å ³		
								3.7; 0.08	2.9; 0.14	2.6; 0.13		
Asp52	Ru	Ru	Ru	Ru	Ru	Ru		Ru A/B				
	(0.35; 29.4)	(0.3; 22.5)	(0.5;	(0.40;	(0.40;	(0.40; 32.7)		(0.3/0.3; 52.1/52				
	Wat	x	Wat		Wat		Wat	5)				
	Wat	Wat	Wat		CO	со		Wat				
	Wat	Wat	wat			со						
	wat	Wat	Wat	Wat	СО	Wat						
				Wat	Wat	Wat						
					Wat							
								Anomal				
								peak:				
								3.1; 0.07				
Asp101	Ru (0.10.	Ru (0.1:25.5)		Ru	Ru							
	33.7)	Ru		(0.70;	(0.65;							
	Ru (0.10.	(0.1; 45.5)			30.9) W-4							
	26.9)				wat							
				Wat	Wat							
				Wat	Wat							

				Wat	Wat				
				Ru	Ru				
				(0.70 [.]	(0.65.				
				21.8)	81.0)				
				Wat					
				Wat	Wat				
				Wat					
				Wat					
Asp119	Ru (0.5:42.4)	Ru (0.3:31.8)	Ru	Ru		Ru	Ru	Ru	
	(0.5, 42.4)	(0.5, 51.6) Cl	(0.5;	(0.70;		(0.5;	(0.3;	(0.6;49.	
			Wat	Wat		CO	42.5)	г) СО	
			Wat	CO		CO	Wat	co	
			Wat	Wat				СО	
				Wat				Wat	
				Wat				OE1	
								Gln121	
						Anomal ous peak: rmsd, e ⁻ /Å ³ 3.5; 0.08	Anomal ous peak: rmsd, e ⁻ /Å ³	Anomal ous peak: rmsd, e ⁻ /Å ³ 4.8; 0.20	
Leu129	Ru	Ru				Ru			
	(0.5; 43.7)	(0.3; 27.4)							
		Ru (0.5; 29.9)				(0.3; 58.5)			
						Wat			
						Wat			
						Wat			
						Anomal ous peak:			
						rmsd, e ⁻ /Å ³			
						4.0; 0.09			

Table S3. Root Mean Square Deviations values (Å) computed on CA atoms among HEWL adducts formed with Ru ^{II} IM, Ru ^{II} MIM and Ru ^{II} MBI.									
	HEWL- Ru ^{II} IM	HEWL- Ru ^{II} IM	HEWL- Ru ¹¹ MIM	HEWL- Ru ¹¹ MIM					
	First structure	Second structure	Crystals grown using NaCl	Crystals grown using ethylene glycol					
HEWL- Ru ¹¹ IM	-	0.12	0.18	0.30					
First structure									
HEWL- Ru ⁿ IM		-	0.14	0.28					
Second structure									
HEWL- Ru ⁱⁱ MIM			-	0.28					
Crystals grown using NaCl									
HEWL- Ru ⁿ MIM				-					
Crystals grown using ethylene glycol									

Table S4. Root Mean Square Deviations values (Å) computed on CA atoms among RNase A adducts formed with $Ru^{II}MRu^$

	RNase A- Ru ^{II} IM Chain A	RNase A- Ru ^{II} IM Chain B	RNase A- Ru ^{II} MIM Chain A	RNase A- Ru ^{II} MIM Chain B	RNase A- Ru ^{II} MBI Chain A	RNase A- Ru ^{II} MBI Chain B	Ligand-free RNase A Chain A (1JVT)	Ligand-free RNase A Chain B (1JVT)*
RNase A- Ru ⁿ IM Chain A	-	0.47	0.37	1.18	0.38	0.59	0.48	0.49
RNase A- Ru ^{II} IM Chain B		-	0.60	1.04	0.52	0.36	0.53	0.29
RNase A- Ru ⁿ MIM Chain A			-	1.22	0.22	0.66	0.42	0.54
RNase A- Ru ⁿ MIM Chain B				-	1.18	1.00	1.19	1.12
RNase A- Ru ⁿ MBI Chain A					-	0.58	0.34	0.44
RNase A- Ru ⁿ MBI Chain B						-	0.61	0.44
Ligand-free RNase A Chain A							-	0.48
Ligand-free RNase A Chain B								-

*from reference 36 of the main text.

	RNase A-Ru ^{II} IM	RNase A-Ru ^{II} MIM	RNase A-Ru ^{II} MBI
Resolution (Å)	2.07	1.98	1.82
Rfactor/Rfree(%)	18.1/27.2	17.6/27.9	16.5/23.6
	Ru (Occupancy; B-factor (Å ²))	Ru (Occupancy; B-factor (Å ²))	Ru (Occupancy; B-factor (Å ²))
	Ru ligands Axial Equat.	Ru ligands Axial Equat.	Ru ligands Axial Equat.
His105 mol A	Ru (0.7, 61.8)	Ru (0.7, 61.8)	Ru (0.5, 58.8)
	CO CO Wat	CO CO Wat	CO Wat Wat
	Anomalous peak: rmsd, e'/Å ³ 4.8: 0.20	Anomalous peak: rmsd, e ⁻ /Å ³	Anomalous peak: rmsd, e [.] /Å ³ 2.4: 0.28
His119 mol B	Ru (0.6, 52.8) CO wat	Ru (0.7, 51.5) CO	Ru (0.6, 44.0) CO
	Wat Wat x	CO Wat x	CO Wat x
	Anomalous peak: rmsd, e [.] /Å ³ 3.5; 0.14	Anomalous peak: rmsd, e ⁻ /Å ³	Anomalous peak: rmsd, e ⁻ /Å ³ 5.8; 0.68
His105 mol B	Ru (0.4, 52.7) Wat Wat X		
	Anomalous peak: rmsd, e [.] /Å ³ 3.2; 0.13		

Figure S1. Anomalous maps for HEWL-Ru^{II}IM (A, 3.0 σ level), HEWL Ru^{II}MIM (B, 3.0 σ level), RNase A-Ru^{II}IM (C, 2.5 σ level), RNase A-Ru^{II}MBI (D, 2.5 σ level),