Supporting Information

Ligand Effect on the Rhodium Porphyrin Catalyzed Hydrogenation of [2.2]Paracyclophane with Water: Key Bimetallic Hydrogenation

Chun Meng Tam, Ching Tat To, and Kin Shing Chan*

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong

Kong SAR, People's Republic of China

E-mail: ksc@cuhk.edu.hk

Contents

1.	Summary of Porphyrin Ligand and Axial Ligand Effect on the	p. S2
	Rhodium Porphyrin Catalyzed Hydrogenation of 1 with Water	
2.	Reaction Time Profiles	p. S3
3.	Estimation of Reaction Rate of Hydrolysis and Bimetallic	P. S9
	Reductive Elimination	
4.	Kinetics Experiment Section	p. S12
5.	Estimation of Free Energy Change of C-C σ -bond Hydrogenation	p. S17
	of 1 with water	
6.	¹ H NMR Spectra	p. S20
7.	Mass Spectra of 5	P. S21
8.	References	p. S22

1. Summary of Porphyrin Ligand and Axial Ligand Effect on the Rhodium Porphyrin Catalyzed Hydrogenation of [2.2]Paracyclophane (1) with Water

9	+ (1 1.6 mM	Rh(por H ₂ O <u>ac</u> 00 equiv) C ₆ D da sea)L (10 mol%) dditives ₆ , 200 °C, Irk, time aled tube		2] +	3	(S1)
Entry	por ligand	axial ligand	Catalyst	time	2 ^{<i>a</i>}	3 ^{<i>a</i>}	Mass	Rh ^{III} (por)H ^a
	/ por	/ L		/ h	/%	/%	Balance ^a /	/ %
							%	
1	ttp	Me	12	54	79	10	89	30
2	tap	Me	13	54	69	10	79	43
3	ttp	Rh ⁱⁱ (ttp)	14	47	79	14	93	38
4	tmp	Me	15	168	55	13	68	18
5	tmp	/	16	83	78	19	97	43
6	ttp	CI (KOH) ^b	17	48	65	13	78	31
7	ttp	CH_2CH_2Ph	18	51	74	11	85	24
8	ttp	ⁱ Pr	19	50	68	10	78	41
9	ttp	CH ₂ CH ₂ OH	20	49	75	12	87	17
10	ttp	Bn	21	47	75	10	85	27
11	ttp	Me (PPh ₃) ^c	22	53	79	9	88	21
12	ttp	Н	23	40	79	15	94	45

Table S1

^{*a*} MR yield. ^{*b*} 1 equiv of KOH w.r.t. **1** added. ^{*c*} 1 equiv of PPh₃ w.r.t. Rh(ttp)Me (**12**) added. ttp = 5,10,15,20-tetratolylporphyrin, tap = 5,10,15,20-tetraanisylporphyrin, tmp = 5,10,15,20-tetramesitylporphyrin.

2. Reaction Time Profile

1 0.9 0.8

0.7

Table S2.	Reaction Ti	ime Profile for t	he Oxidative Ac	ddition of water	with [Rh ¹¹	$(ttp)]_2(14)$
-----------	--------------------	-------------------	-----------------	------------------	------------------------	----------------

Rh"(ttp)] ₂ 14	+ H ₂ O 1000 equiv	C ₆ D ₆ , 200 °C, dark sealed tube, 6.5 h	→ Rh ^{III} (ttp)H (23
0.48 mM 6% recovery			76%
Time	[Rh ^{II} (ttp)] ₂	Rh ^{III} (ttp)H /	Mass Balance /
/ h	/ mM	mM	mM
0	0.48	0	0.96
0.08	0.28	0.16	0.72
0.4	0.18	0.35	0.71
1.0	0.13	0.52	0.78
2.2	0.06	0.64	0.76
3.2	0.04	0.70	0.79
4.2	0.04	0.70	0.78
64	0.03	0.73	0.78

Rh ^{III} (ttp)Br 21 0.96 mM	n + I 1	H ₂ O – 000 equiv	C ₆ D ₆ , 200 °C, dar sealed tube, 26 ł	→ Rh ^{III} (ttp rk 23 n 33%	b)H + [Rh ^{ll} (ttp)] <u>/</u> 14 % 7%	2 + Bn-H 24 62%	(S3
-	Time	Rh ^{III} (ttn)Bi	n Rh ^{III} (ttp)H	[Rh ^{II} (ttn)] ₂	Mass Balance	Bn-H	
	/ h	/ mM	/ mM	/ mM	/ mM	/ mM	
_	0	0.96	0	0	0.96	0	
	0.3	0.86	0.06	0.02	0.96	0.03	
	0.8	0.77	0.07	0.03	0.89	0.08	
	1.8	0.45	0.05	0.03	0.55	0.10	
	5.2	0.32	0.08	0.04	0.48	0.22	
	13	0.15	0.15	0.04	0.38	0.47	
	26	0.03	0.32	0.04	0.44	0.60	
- C	26 1 0.9	0.03	0.32	0.04	0.44	0.60	

Table S3. Reaction Time Profile for the Hydrolysis of Rh^{III}(ttp)Bn (21) with Water

Figure S2. Reaction Time Profile for the Hydrolysis of Rh^{III}(ttp)Bn (21) with Water

Rh ^{III} (tmp) 25 0.96 mN	Bn + 1	H ₂ O C 1000 equiv ^s	₆ D ₆ , 200 °C, dark sealed tube, 37 h	Rh ^{III} (tmp 26 22%	o)H + Rh ^{ll} (tmp) 16 15%	+ Bn-H 24 59%	(S4)
	Time	Rh ^{III} (tmp)Br	n Rh ^{III} (tmp)H	Rh ^{II} (tmp)	Mass Balance	Bn-H	
	/ h	/ mM	/ mM	/ mM	/ mM	/ mM	
	0	0.96	0	0	0.96	0	
	0.5	0.92	~0	~0	0.92	0.03	
	2.5	0.75	0.06	0.07	0.88	0.13	
	4.5	0.52	0.06	0.08	0.67	0.18	
	12.5	0.24	0.10	0.12	0.47	0.34	
	26	0.08	0.17	0.17	0.42	0.49	
	31	0.05	0.20	0.15	0.40	0.51	
	35	0.04	0.20	0.15	0.39	0.53	
	37	0.03	0.21	0.14	0.38	0.56	

Table S4. Reaction Time Profile for the Hydrolysis of Rh^{III}(tmp)Bn (25) with Water

Table S5. Reaction Time Profile for the Bimetallic Reductive Elimination of Toluene (24)from Rh^{III}(ttp)H (23) and Rh^{III}(ttp)Bn (21)

Rh ^{III} (ttp)Bn 21 0.96 mM	+ Rh ^{III} (ttp)H 23 1 equiv 53% recovery*	residual H₂O (27 equiv) C ₆ D ₆ , 200 °C, dark sealed tube, 3.5 h	Bn-H 24 76%**	+	[Rh ^{II} (ttp)] ₂ 14 3%*	(S5)
*NMR yield w **NMR yield v	v.r.t. total Rh(ttp) w.r.t. 21 added					

Time	Rh ^{III} (ttp)Bn	Rh ^{III} (ttp)H	$[Rh^{II}(ttp)]_2$	Mass Balance	Bn-H
/ h	/ mM	/ mM	/ mM	/ mM	/ mM
0	0.96	0.96	0.07	2.05	0
0.08	0.83	0.71	0.07	1.69	0.07
0.3	0.73	0.72	0.10	1.65	0.18
0.4	0.54	0.89	0.11	1.66	0.30
0.9	0.32	0.95	0.10	1.46	0.48
1.4	0.19	0.96	0.07	1.29	0.59
1.9	0.15	1.06	0.04	1.29	0.59
2.8	0.08	1.06	0.04	1.21	0.68
3.7	0.03	1.08	0.03	1.17	0.73

Table S6. Reaction Time Profile for the Hydrogenolysis of Rh^{III}(ttp)Bn (21) with water and0.5 Equiv Rh^{III}(ttp)H (23)

Rh ^{III} ((ttp)Bn 21 6 mM	+ F	Rh ^{III} (ttp)H 23 0.5 equiv	+	H ₂ O)0 eauiv	C ₆ D ₆ seal	, 200 °C, led tube, {	► dark 5 h	Bn-H 24	+	[Rh ^{ll} (ttp)] ₂ 14	(S6)
*		72%	6 recovery*						87%**		<1%*	
**NM	R yield w	v.r.t. 2	added									
-	Time	Rh ^I	^{II} (ttp)Bn	Rh	^{II} (ttp)H	[R	h ^{II} (ttp)] ₂	Ma	ss Bala	ince	Bn-H	
	/ h	/	mM	/	mМ		/ mM		/ mM		$/\mathrm{mM}$	
-	0		0.96	().48		0		1.44		0	
	0.5		0.84	().51		0		1.35		0.22	
	1.0		0.54	().58		0.02		1.16		0.41	
	2.0		0.24	().76		0.02		1.04		0.56	
	2.6		0.17	().83		0.03		1.06		0.67	
	3.1		0.13	().87		0.03		1.06		0.72	
	3.6		0.08	().94		0.03		1.08		0.78	
	4.6		0.05		1.01		0		1.06		0.82	
	5.1		0.03		1.04		0		1.08		0.83	

Table S7. Reaction Time Profile for Rhodium benzyl Intermediates 4 and 5 Over Time for 10 mol% Rh(ttp)H (23) Catalysis (Table 1/S1, entry 12)

Figure S6. Plot of Ratio of Rhodium Benzyl Intermediates (4/5) Over Time

3. Estimation of Reaction Rate for Hydrolysis and Bimetallic Reductive Elimination

Rh ^{III} (ttp)Bn -	ł	H ₂ O	+	Rh ^{III} (ttp)H	 C ₆ D ₆ , 200 ^o C, dark	Bn-H	(S8)
21				23	Sealed tube, Time	24	
0.96 mM, 1 equiv		960 mM				NMR yield	

Hydrolysis and BMRE are proposed to be the two parallel hydrogenation pathways since $Rh^{III}(ttp)H$ (23) and $[Rh^{II}(ttp)]_2$ (14) were observed in the hydrolysis of $Rh^{III}(ttp)Bn$ (21) with water (eq S3 and Figure S2). Furthermore, 23, either added or build-up from 14 in the presence of excess water, could promote the hydrogenation of 21 via BMRE and shorten the reaction time from 26 h to 3.5 h (Table S8 and Figure S7).

The contribution from BMRE (k_1) and hydrolysis (k_2) in the hydrogenolysis of **21** was estimated with the initial rate of Bn-H (**24**) formation (<20% consumption of **21**) against [Rh^{III}(ttp)H] with assumed rate = k_1 [**21**][Rh^{III}(ttp)H] + k_2 '[**21**], where k_2 ' = k_2 [H₂O]; [H₂O] = 960 mM; [**21**] = 0.96 mM and [**23**] = 0 – 0.96 mM (Table S8 and Figure S8). The solubility of water in benzene is reported to be ~2 M at 200 °C.¹ The values of k_1 and k_2 ' were found to be 0.71 ± 0.02 and 0.11 ± 0.01 mM⁻¹ h⁻¹ respectively. The ratio of k_1/k_2 ' = 6.7 ± 0.1 is consistent with the BMRE being a more effective hydrogenolysis step than hydrolysis.

0.9	Rh ^{III} (ttj 2 ′ 96 mM,	o)Bn + 1 1 equiv 9	H ₂ O + 960 mM	Rh ^{III} (ttp)H 23	C ₆ D ₀ Sea	₆ , 200 °C, c led tube, Ti	<mark>dark</mark> ime	Bn-H 24 NMR yield	(S8)
	entry	Rh ^{III} (ttp)H	Time	Rh ^{III} (tt	p)H	Bn-H ^b /	Initia	al rate of Bn-	H
		/ mM	/ h	recove	red ^a	%		formation	
				/ mN	Л			$/ \text{ mM } h^{-1}$	
	1	0	26	0.3	2	62		0.10	
	2	0.096	22	0.2	5	75		0.18	
	3	0.48	5	1.0		87		0.41	
	4 ^{<i>c</i>}	0.96	3.5	1.1		76		0.76	

Table S8. Rh^{III}(ttp)H (23) Dependent Hydrogenolysis of Rh^{III}(ttp)Bn (21) with Water

^{*a*}[Rh^{II}(ttp)]₂ (14) was recovered in <0.04 mM. ^{*b*} NMR yield w.r.t. 21 added. ^{*c*}Amount of Residual water ~27 equiv estimated by NMR.

Figure S7. Plot of Reaction Time for the Hydrogenolysis of Rh^{III}(ttp)Bn (21) against Rh^{III}(ttp)H (23) Loading

Figure S8. Plot of Initial Rate of Toluene (24) Formation against [Rh^{III}(ttp)H] (23)

4. Kinetics Experiment Section

The reaction order of $Rh^{III}(ttp)H$ (23) was examined with initial rate measurements with conditions which $[Rh^{III}(ttp)H] = 0.96 - 2.4 \text{ mM}$ and [1] = 9.6 mM at 200 °C (Table S9-S10 and Figure S9-11).

The reaction order of **23** was also examined with the normalized time scale which utilize plots of [substrate] against [catalyst]ⁿ (where n = reaction order) over the entire reaction time profiles monitored by ¹H NMR. (Figure 3 and Table S11)

1 9.6 m	+ nM	- H ₂ C (100 eq	, <u>Rh</u> uiv)	^Ⅲ (ttp)⊢ C,	<u>I (23) (0.96</u> , ₆ D ₆ , 200 °C dark, time	24.8 mM)	+	(S9) 3
Entry	n /	time	2 /	3/	2 + 3 /	Rh ^{III} (ttp)H	Initial Rate of	Initial Rate of
	mМ	/ h	%	%	%	recovered / %	Consumption of	Formation of 2 /
							1 / mM h ⁻¹	$mM h^{-1}$
1	0.96	40	79	15	94	45	-0.43 ± 0.04	0.38 ± 0.01
2	1.9	32	77	11	88	26	-0.9 ± 0.1	0.75 ± 0.03
3	2.4	28	79	13	92	29	-1.1 ± 0.2	0.97 ± 0.01
4	9.6	10	71	24	95	28	/	/

Table S9. Determination of reaction order of Rh^{III}(ttp)H (23) By Initial Rate Measurement

Table S10. Determination of reaction order of Rh^{III}(ttp)H (23) By Initial Rate

Measurement with log-log Plot

Entry	n /	log n	log (-Initial Rate of	log (Initial Rate of
	mМ		Consumption of 1)	Formation of 2)
1	0.96	-0.018	-0.367	-0.42_0
•	1.0	0.00	0.045	0.10
2	1.9	0.28	-0.0458	-0.125
3	24	0 38	0.0414	-0.013_{2}
U		0.20	010114	
4	9.6	/	/	/

Figure S9. Plot of Initial Rate of Formation of [**2**] against Time with $[Rh^{III}(ttp)H] = 0.96 \text{ mM}$ and $[\mathbf{1}] = 9.6 \text{ mM}$ at 200 °C (Table S9, entry 1)

Figure S10. Plot of Initial Rate of Consumption of [1] against Time with $[Rh^{III}(ttp)H] = 0.96$ mM and [1] = 9.6 mM at 200 °C (Table S9, entry 1)

Figure S11. Plot of log (-Initial Rate of Consumption of [1]) (▲) and log (Initial Rate of

Formation of **2**) (**(**) against log [Rh^{III}(ttp)H]

Table S11. Determination of reaction order of Rh^{III}(ttp)H (23) By Normalized Time Scale Method

		[cut] 0		(20)	
t / h	[1] / mM	t[cat] ⁰ / h	$t[cat]^{0.5} / mM^{0.5} h$	$t[cat]^1 / mM h$	$t[cat]^2 / mM^2 h$
0	9.6	0	0	0	0
0.16	9.7	0.16	0.16	0.15	0.15
2.2	8.6	2.2	2.1	2.1	2.0
4.0	8.0	4.0	3.9	3.8	3.7
18	2.8	18	18	17	17
25	2.0	25	24	24	23
35	0.69	35	34	34	32
38	0.46	38	37	36	35
40	0.26	40	40	39	37

 $[cat] = 0.96 \text{ mM Rh}^{III}(ttp)H (23)$

 $[cat] = 1.9 \text{ mM Rh}^{III}(ttp)H(23)$

t / h	[1] / mM	t[cat] ⁰ / h	$t[cat]^{0.5} / mM^{0.5} h$	t[cat] ¹ / mM h	$t[cat]^2 / mM^2 h$
0	9.6	0	0	0	0
0.25	9.3	0.25	0.34	0.48	0.92
0.58	9.1	0.58	0.80	1.1	2.1
4.0	7.0	4.0	5.5	7.7	15
14	2.0	14	19	27	52
32	0.20	32	44	61	118

t / h	[1] / mM	t[cat] ⁰ / h	$t[cat]^{0.5} / mM^{0.5} h$	t[cat] ¹ / mM h	$t[cat]^2 / mM^2 h$
0	9.6	0	0	0	0
0.16	8.8	0.16	0.25	0.38	0.92
2.2	7.1	2.2	3.3	5.2	12
4.0	4.3	4.0	6.2	9.6	23
18	1.0	18	28	43	104
25	0.51	25	38	59	141
27	0.23	27	41	64	152
28	0.13	28	43	67	161

 $[cat] = 2.4 \text{ mM Rh}^{III}(ttp)H (23)$

 $[cat] = 9.6 \text{ mM Rh}^{III}(ttp)H (23)$

t / h	[1] / mM	t[cat] ⁰ / h	$t[cat]^{0.5} / mM^{0.5} h$	t[cat] ¹ / mM h	$t[cat]^2 / mM^2 h$
0	9.6	0	0	0	0
0.75	5.5	0.75	2.3	7.2	69
1.1	4.6	1.1	3.4	11	101
3.7	1.4	3.7	11	36	340
4.5	1.0	4.5	14	43	414
6.5	0.51	6.5	20	62	599
7.7	0.34	7.7	24	73	705
9.7	0.13	9.7	30	93	889

5. Estimation of Free Energy Change of C-C σ-bond Hydrogenation of 1 with water

SPARTAN '16 Quantum Mechanics Driver: (Win/64b) Release 2.0.0

Job type: Frequency calculation.

Method: RHF

Basis set: 3-21G

Table S12 Optimization of Coordinates for [2.2]Paracyclophane (1), 4,4'-Dimethylbibenzyl

(2), Water and Oxygen

 H_2O

Number of basis functions: 13

Number of electrons: 10

Cartesian Coordinates (Angstroms)						
Atom		X	Y	Ζ		
1 0	01	0.0000000	0.0000000	-0.3800314		
2 H	H1	0.0000000	0.7806339	0.1900157		
3 H	H2	0.0000000	-0.7806339	0.1900157		

O_2

Number of basis functions: 18

Number of electrons: 16 (2 unpaired)

Cartesian Coordinates (Angstroms)						
Atom		X	Y	Ζ		
1 0	01	0.0000000	0.0000000	0.6197905		
2 0	02	0.0000000	0.0000000	-0.6197905		

[2.2]Paracyclophane (1)

Number of basis functions: 176

Number of electrons: 112

Cartesian Coordinates (Angstroms)							
	Atom		Х	Y	Ζ		
1	Н	H1	1.4994550	2.1216346	1.2165486		
2	С	C1	1.5247468	1.1858953	0.6910877		
3	С	C4	1.5247468	-1.1858953	-0.6910877		
4	С	C2	1.5247416	1.1858066	-0.6912641		
5	С	C6	1.3799705	0.0000949	1.3953465		
6	С	C5	1.5247416	-1.1858066	0.6912641		
7	С	C3	1.3799705	-0.0000949	-1.3953465		
8	Н	H2	1.4994459	2.1214740	-1.2168590		
9	Н	H5	1.4994459	-2.1214740	1.2168591		
10	Н	H4	1.4994550	-2.1216346	-1.2165486		
11	Н	H7	-1.4994459	2.1214740	1.2168590		
12	С	C7	-1.5247416	1.1858066	0.6912641		
13	С	C8	-1.5247416	-1.1858066	-0.6912641		
14	С	C9	-1.5247468	1.1858953	-0.6910877		
15	С	C10	-1.3799705	-0.0000949	1.3953465		
16	С	C11	-1.5247468	-1.1858953	0.6910877		
17	С	C12	-1.3799705	0.0000949	-1.3953465		
18	Н	H8	-1.4994550	2.1216346	-1.2165486		
19	Н	H10	-1.4994550	-2.1216346	1.2165486		
20	Н	H12	-1.4994459	-2.1214740	-1.2168590		
21	С	C13	0.8094701	0.0002887	2.7998030		
22	Н	H13	1.1451671	-0.8735977	3.3445903		
23	Н	H14	1.1448190	0.8744768	3.3443320		
24	С	C14	-0.8094701	-0.0002887	2.7998030		
25	Н	H6	-1.1451671	0.8735977	3.3445903		
26	Н	H15	-1.1448190	-0.8744768	3.3443320		
27	С	C15	0.8094701	-0.0002887	-2.7998030		
28	Н	H17	1.1448190	-0.8744768	-3.3443320		
29	Н	H18	1.1451671	0.8735977	-3.3445903		
30	С	C16	-0.8094701	0.0002887	-2.7998030		
31	Н	H3	-1.1451671	-0.8735977	-3.3445903		
32	Н	H19	-1.1448190	0.8744768	-3.3443320		

4,4'-Dimethylbibenzyl (2)

Number of basis functions: 180

Number of electrons: 114

Cartesian Coordinates (Angstroms)							
A	tom	Х	Y	Ζ			
1 H	H1	-2.1098318	1.4953854	-1.9437206			
2 C	C1	-2.2540993	0.9387364	-1.0375454			
3 C	C4	-2.6021912	-0.4682445	1.3006913			
4 C	C2	-3.3291251	0.0701862	-0.9320353			
5 C	C6	-1.3634383	1.1006049	0.0094139			
6 C	C5	-1.5236828	0.3991890	1.1942318			
7 C	C3	-3.4910992	-0.6310236	0.2545297			
8 H	H6	-0.5358102	1.7736859	-0.0981541			
9 H	H3	-4.3208901	-1.3031302	0.3637877			
10 H	H4	-2.7537559	-1.0148377	2.2125999			
11 H	H7	4.3208901	1.3031302	0.3637877			
12 C	C7	3.4910992	0.6310236	0.2545297			
13 C	C8	1.3634383	-1.1006049	0.0094139			
14 C	C9	3.3291251	-0.0701862	-0.9320353			
15 C	C10	2.6021912	0.4682445	1.3006913			
16 C	C11	1.5236828	-0.3991890	1.1942318			
17 C	C12	2.2540993	-0.9387364	-1.0375454			
18 H	H9	2.7537559	1.0148377	2.2125999			
19 H	H11	2.1098318	-1.4953854	-1.9437206			
20 H	H12	0.5358102	-1.7736859	-0.0981541			
21 C	C13	-4.2902879	-0.1270159	-2.0892562			
22 H	H2	-3.9640105	-0.9501219	-2.7182145			
23 H	H13	-4.3457066	0.7630932	-2.7045531			
24 H	H14	-5.2879922	-0.3533295	-1.7318473			
25 C	C14	4.2902879	0.1270159	-2.0892562			
26 H	H8	5.2879922	0.3533295	-1.7318473			
27 H	H15	3.9640105	0.9501219	-2.7182145			
28 H	H16	4.3457066	-0.7630932	-2.7045531			
29 C	C15	-0.5472953	0.5527302	2.3429000			
30 H	H17	-1.0896380	0.5027802	3.2818153			
31 H	H18	-0.0655870	1.5222003	2.2953569			
32 C	C16	0.5472953	-0.5527302	2.3429000			
33 H	H5	1.0896380	-0.5027802	3.2818153			
34 H	H20	0.0655869	-1.5222003	2.2953569			

6. NMR Spectra

¹H NMR Spectrum of **5** (C_6D_6 , 400 MHz)

7. Mass Spectra

Mass Spectra of 5

8. References

(1) M. Góral, B. Wiśniewska-Gocłowska and A. Mączyński, J. Phys. Chem. Ref. Data, 2004, 33, 1159.