Electronic Supplementary Information

Anti-proliferative activity of (η^6 -arene)ruthenacarborane sandwich complexes against HCT116 and MCF7 cell lines

Marta Gozzi,^a Benedikt Schwarze,^a Menyhárt-Botond Sárosi,^a Peter Lönnecke,^a Dijana Drača,^b Danijela Maksimović-Ivanić,^b Sanja Mijatović^b and Evamarie Hey-Hawkins^{*a}

^a Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany

^b University of Belgrade, Institute of Biological Research "Siniša Stanković", Bul. Despota Stefana 142, 11060 Belgrade, Serbia

Table of Contents

1	Characterisation of P-4 and 2	3
	1.1 Compound P-4	3
	1.2 Compound 2	3
2	Selected ¹ H and ¹¹ B{ ¹ H} NMR spectra	4
	2.1 ¹ H NMR spectra of 2 in DMSO-d ₆ and CDCl ₃	4
	2.2 ¹ H NMR spectrum of 3	5
	2.3 Expansion of ¹ H NMR spectra of biphenyl, Ru3 and 3	6
	2.4 ¹ H and ¹¹ B{ ¹ H} NMR spectra of 4	7
3	Crystallographic Data	9
	3.1 Data collection and refinement data	9
	3.2 Molecular structure of compound 2 , 3 and 4	10
	3.3 Selected distances and angles for compound 3	11
	3.4 Compound 4: crystal packing, selected distances and angles	12
4	Frontier Molecular Orbitals	14
	4.1 Frontier molecular orbitals of 2 and 2-Cp	14
	4.2 Frontier molecular orbitals of 3 and 3-Cp	15
	4.3 Frontier molecular orbitals of 4 and 4-Cp	16
5	Cell viability curves	17
	5.1 Cell viability curves for 2 , 3 , 4 and cisplatin	17

	5.2 Incubation of macrophages, MLEC cells and MRC-5 cells with 4	18
6	UV-vis spectra of PBS/DMSO and BSA in PBS with complex 3	19
7	List of Abbreviations	19
8	References	21

1 Characterisation of P-4 and 2

1.1 Compound P-4

Yield: 9.62 g (49%). ¹H NMR (DMSO-d₆): δ (ppm) = 1.22 (3H, t, ³J_{HH} = 7.1 Hz, H⁹), 1.66 (3H, s, H¹⁰), 2.71–2.86 (4H, m, H³ and H⁶), 4.13 (2H, q, ³J_{HH} = 7.2 Hz, H⁸), 5.40–5.48 (1H, m, H⁵), 6.84–6.90 (1H, m, H²).

1.2 Compound 2

Synthesis of **2** was performed according to a modified synthesis for $3-(p-cym)-3,1,2-closo-RuC_2B_9H_{11}$, as described in the manuscript. 0.53 g of **1** (0.98 mmol, 3.0 eq.), 0.2 g (0.33 mmol, 1.0 eq.) of **Ru2** and 20 mL of dry THF were used.

2 was obtained as pale yellow crystalline powder ($R_f = 0.87$ in CH_2Cl_2) in 53% yield (64 mg). Crystals of **2** suitable for X-ray diffraction analysis were obtained at 4 °C from an acetone/*n*-hexane (1:1 v/v) solution.

M.p. (from acetone/*n*-hexane): 176–178 °C. ¹H NMR (DMSO-d₆): δ (ppm) = 0.58–3.08 (9H, br, B₉H₉), 1.22 (6H, d, ³J_{HH} = 6.9 Hz, H⁶), 2.22 (3H, s, H⁷), 2.80 (1H, hept, ³J_{HH} = 6.9 Hz, H⁵), 4.10 (2H, br s, C_{cluster}H), 6.13 (2H, d, ³J_{HH} = 6.3 Hz, H² or H³), 6.20 (2H, d, ³J_{HH} = 6.3 Hz, H² or H³). ¹¹B NMR (DMSO-d₆): δ (ppm) = -24.8 (1B, d, ¹J_{BH} = 119 Hz), -20.4 (2B, d, ¹J_{BH} = 155 Hz), -10.3 (2B, d, ¹J_{BH} = 139 Hz), -8.1 (2B, d, ¹J_{BH} = 139 Hz), -1.3 (1B, d, ¹J_{BH} = 144 Hz), 0.4 (1B, d, ¹J_{BH} = 139 Hz). ¹³C{¹H} NMR (DMSO-d₆): δ (ppm) = 18.7 (s, C⁵), 22.8 (s, C⁶), 31.4 (s, C⁷), 48.1 (s, C_{cluster}H), 87.7 (s, C² or C³), 90.2 (s, C² or C³), 102.8 (s, C¹ or C⁴), 112.1 (s, C¹ or C⁴). IR (KBr; selected vibrations): \tilde{v} (cm⁻¹) = 3435 (w), 3041 (w), 2963 (m), 2563 (s, v_{BH}), 2526 (s, v_{BH}), 1480 (m), 1377 (m), 1098 (m), 1016 (m), 986 (m), 863 (m). ESI-MS positive mode, CH₂Cl₂/MeOH): *m/z* = 391.1 (100%, [M+Na]⁺). Anal. Calcd. for C₁₂H₂₅B₉Ru (367.69): C, 39.20; H, 6.85. Found C, 39.03; H, 6.60.

Selected ¹H and ¹¹B{¹H} NMR spectra 2

protons are found in the range 5.87–5.93 ppm and converge into a *pseudo*-quartet, with $\Delta v_{AB} = 8$ Hz. In DMSO, the two doublets are further apart from each other ($\Delta v_{AB} = 25$ Hz) and shifted downfield by about 0.3 ppm in comparison to the corresponding signals in CDCl₃, which suggests that DMSO acts here as hydrogen bond acceptor. Such intermolecular interactions might be of importance for interaction of the complex with the biological target(s).

2.2¹H NMR spectrum of 3

Figure S2. ¹H NMR spectrum of **3** in DMSO-d₆. Inset shows expansion of the aromatic region. Assignment of aromatic protons of **3** is shown.

2.3 Expansion of ¹H NMR spectra of biphenyl, Ru3 and 3

Figure S3. Expansion of the aromatic region of the ¹H NMR spectra of **3**, **Ru3** and biphenyl. Signals corresponding to complexed and non-complexed arene for **3** and **Ru3** are shown.

Figure S4. ¹H NMR spectra in DMSO-d₆ of freshly dissolved **4** (bottom) and of **4** after stirring for 72 h at 37 °C in DMSO/saline solution (top). Signals belonging to **4** are marked with ***** in the upper spectrum. No changes in the proton signals were found.

Figure S5. ¹¹B{¹H} NMR spectra in DMSO-d₆ of freshly dissolved **4** (bottom) and of **4** after stirring for 72 h at 37 °C in DMSO/saline solution (top). No changes in the boron signals were found.

3 Crystallographic Data

3.1 Data collection and refinement data

 Table S1. Data collection and refinement data for 2, 3 and 4.

		2	3	4
	Empirical formula	$C_{12}H_{25}B_9Ru$	$C_{14}H_{21}B_9Ru$	$C_{12}H_{23}B_9O_2Ru$
	Molecular weight	367.68 g mol ^{−1}	387.67 g mol ^{−1}	397.66 g mol⁻¹
Data collection				
	Reflections collected	47341	29371	36692
	Independent reflections	11241 (R _{int} = 0.0364)	5696 (<i>R</i> _{int} = 0.0425)	8455 (R _{int} = 0.0330)
	Θ _{max}	32.475°	32.498°	37.433°
	Completeness (%)	100.0	100.0	100.0
	Crystal system	Monoclinic	Monoclinic	Monoclinic
	Unit cell	a = 20.0453(4) Å b = 8.0704(1) Å c = 21.0222(4) Å $\beta = 100.727(2)^{\circ}$	a = 11.3260(2) Å b = 10.9993(2) Å c = 13.5471(2) Å β = 97.546(2)°	a = 8.3684(1) Å b = 12.5136(1) Å c = 16.4655(2) Å $\beta = 103.914(1)^\circ$
	Volume	3341.4(1) Å ³	1673.06(5) Å ³	1673.65(3) Å ³
	Space group	<i>P</i> 2 ₁ /n	P21/c	<i>P</i> 2 ₁ /n
	Ζ	8	4	4
	$ ho_{calc}$	1.462 Mg m ⁻³	1.539 Mg m ⁻³	1.578 Mg m ⁻³
	μ(Μο-Κ _α)	0.923 mm ⁻¹	0.926 mm ^{−1}	0.936 mm ⁻¹
Refinement				
	Data/parameters/restraints	11241/534/26	5696/301/0	8455/309/6
-	R (Ι > 2σΙ)	0.0391	0.0289	0.0272
-	$R_{\rm w}$ (I > 2 σ I)	0.0723	0.0575	0.0590
-	R (all data)	0.0519	0.0379	0.0350
-	R _w (all data)	0.0755	0.0606	0.0623
-	Max. / Min. residual electron density	0.834 / −0.663 e·Å ⁻³	0.870 / −0.665 e·Å ⁻³	1.378 / −0.689 e·Å ⁻³
-				

3.2 Molecular structure of compound 2, 3 and 4

Figure S6. Molecular structure of **2**, showing atom labelling. Only one of the two symmetry-independent molecules is shown. Thermal ellipsoids at 50% probability. Hydrogen atoms are omitted for clarity.

Figure S7. Molecular structure of 3, showing atom labelling. Thermal ellipsoids at 50% probability.

Figure S8. Molecular structure of 4, showing atom labelling. Thermal ellipsoids at 50% probability.

3.3 Selected distances and angles for compound 3

Table S2(a,b). Selected distances (Å) and angles (°) for 3.

a)

Distances	Values (Å)
H(5)–Ctd3ª	2.68(2)
H(8X)–H(8)	2.40(3)
H(7X)–H(10)	2.35(3)
H(1)–H(6X)	2.36(3)

^a Ctd3 = centroid of the non-coordinated arene (C(9)–C(10)–C(11)–C(12)–C(13)–C(14)).

b)

Angles	Values (°)
C(5)–H(5)–Ctd3	151.8(2)
C(8)–H(8)–H(8X)	118.0(2)

B(8)–H(8X)–H(8)	119.1(2)
B(7)–H(7X)–H(10)	129.3(2)
H(7X)–H(10)–C(10)	166.1(2)
C(1)–H(1)–H(6X)	154.5(2)
H(1)–H(6X)–B(6)	106.6(2)
C(14)-H(14)-H(1X)	125.1(2)
B(1)-H(1X)-H(14)	136.7(2)

3.4 Compound 4: crystal packing, selected distances and angles

Figure S9. Crystal packing of **4** viewed along the *a* axis. Thermal ellipsoids at 50% probability. 2_1 axis along *b* is shown in brown. Hydrogen atoms are omitted for clarity.

Table S3(a,b). Selected distances (Å) and angles (°) for 4.

Distances	Values (Å)
Ctd1–O(2)ª	3.543(1)
H(12B)–H(1X)	2.43(3)
H(10A)–H(7X)	2.36(3)
H(3X)–H(4)	2.30(3)
H(12A)–H(9X)	2.45(3)
H(8X)–H(8)	2.45(3)
O(1)–H(2)	2.56(2)

^aAccording to Jain *et al.* (2009),¹ non-covalent interactions between a π system and a lone pair of electrons (lp) of an oxygen atom (lp… π) have been identified for oxygen atoms of water molecules. Typical distances π (centroid)–O are \leq 3.5 Å.

b)

Angles	Values (°)
C(12)–H(12B)–H(1X)	134(1)
B(1)–H(1X)–H(12B)	154(1)
C(10)–H(10A)–H(7X)	167(2)
B(7)–H(7X)–H(10A)	120(1)
C(4)–H(4)–H(3X)	147(1)
В(3)–Н(3Х)–Н(4)	119(1)
C(12)–H(12A)–H(9X)	128(2)
B(9)–H(9X)–H(12A)	130(1)
O(1)-H(2)-C(2)	138(1)
O(2)–Ctd1–C(arene)*	90.3(5)

* average value. The O-centroid-C_{arene} reported by Jain *et al.* is in the range of 80 to 110°.1

4 Frontier Molecular Orbitals

4.1 Frontier molecular orbitals of 2 and 2-Cp

LUMO+1 (–1.5 eV)

4.2 Frontier molecular orbitals of 3 and 3-Cp

Figure S11. Frontier molecular orbitals of 3 and 3-Cp.

4.3 Frontier molecular orbitals of 4 and 4-Cp

HOMO-1 (-7.11 eV)

LUMO (-1.72 eV)

LUMO-1 (-1.42 eV)

4-Cp

HOMO-1 (-8.37eV)

LUMO (-2.47 eV)

LUMO-1 (-2.00 eV)

Figure S12. Frontier molecular orbitals of 4 and 4-Cp.

5 Cell viability curves

5.1 Cell viability curves for 2, 3, 4 and cisplatin

Figure S13. Complexes 2-4 inhibited the growth of tumour cell lines. B16, HCT116 and MCF7 cells were incubated with **2**, **3**, **4** and cisplatin for 72 h and thereafter viability was analysed by MTT (column A, left) and CV (column B, right). Results calculated from three repeated experiments are shown. Statistically significant values (p<0.05) are marked with *.

5.2 Incubation of macrophages, MLEC cells and MRC-5 cells with 4

Figure S14. Complex 4 did not affect the viability of normal cells. Peritoneal macrophages (A), MLEC (B) and MRC-5 (C) cell line were incubated with IC_{25} , IC_{50} and IC_{100} doses of **4** (values obtained from tumour cell lines). Cell viability was analysed by MTT assay. Results from representative of three repeated experiments with the same experimental conditions are presented. 0 stands for control (untreated cells).

Figure S15. Effect of **3** on the UV-vis absorption spectra of PBS/DMSO and BSA (in PBS) solutions at room temperature (pH = 7.4). [BSA] = $2.0 \times 10-5$ M; [**3**] = 20μ M. Absorption spectra of PBS/DMSO (green curve) and BSA (in PBS; yellow curve) without complex **3** are also shown. Increase of BSA absorption at 278 nm upon incubation with **3** indicates formation of a protein-drug complex in solution. No variation of BSA+**3** absorption intensity at 278 nm over time, in the time-scale of the experiments, was found.

7 List of Abbreviations

ANN(V)	Annexin V-FITC
B16	mouse melanoma
BNCT	boron neutron capture therapy
BSA	bovine serum albumin
br (NMR)	broad
Cb ^{2–}	dicarbollide, $C_2B_9H_{11}^{2-}$
CFSE	carboxyfluorescein succinimidyl ester
Ср	cyclopentadienyl

Cp*	pentamethylcyclopentadienyl
CV	crystal violet
<i>p</i> -cymene	1-methyl-4-isopropyl-benzene
d (NMR)	doublet
DFT	density functional theory
DMSO	dimethylsulfoxide
EDTA	ethylendiamminetetraacetic acid
FA	formic acid
FCS	fetal calf serum
h	hour(s)
hept (NMR)	heptet
номо	highest occupied molecular orbital
HTC-116	human colon carcinoma
IC ₅₀	half-maximal inhibitory concentration
LUMO	lowest unoccupied molecular orbital
m (IR)	medium
m (NMR)	multiplet
M.p.	melting point
3-MA	3-methyl adenine
MCF-7	human breast carcinoma
Mf	mouse peritoneal macrophages
MRC-5	primary transformed fibroblasts
MLEC	mouse endothelial lung cells
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
PBS	phosphate-buffered saline
Ph	phenyl
PI	propidium iodide

q (NMR)	quartet
RNase	ribonuclease
r.t.	room temperature
s (IR)	strong
s (NMR)	singlet
t (NMR)	triplet
THF	tetrahydrofuran
TLC	thin layer chromatography
w (IR)	weak

8 References

1. A. Jain, V. Ramanathan, R. Sankararamakrishnan, *Protein Sci.*, 2009, **18**, 595.