Supporting Information for

Manual Assembly of Rare-earth Polyoxometalate Micro-

crystals Film Showing Polarized Luminescence

Rui Zhang,[‡] Libo Qin,[‡] Arshad Iqbal, Yunshan Zhou, * Lijuan Zhang, * Haizhou Ren, Xiaofei Lv

and Minglei Li

State Key Laboratory of Chemical Resource Engineering, Institute of Science, Beijing

University of Chemical Technology, Beijing 100029, P. R. China

Table of contents	Page
1. IR spectrum of Ag ₉ [EuW ₁₀ O ₃₆]	S2
2. EDX analysis	S2
3. ICP analysis results	S2
4. XRD patterns of Na ₉ [EuW ₁₀ O ₃₆]	S3
5. Emission decay curves	S3
6. Luminescence data of Ag ₉ [EuW ₁₀ O ₃₆]	S4

Figure S1. IR spectra of $Ag_9[EuW_{10}O_{36}]$ microplates and $Na_9[EuW_{10}O_{36}]$ powders.

Figure S2. The XRD patterns of $Na_9[EuW_{10}O_{36}]$ and $Ag_9[EuW_{10}O_{36}]$ powders.

Figure S3. EDX analysis of the $Ag_9[EuW_{10}O_{36}]$ microplates (a) and the SEM image highlighting the area for EDX analysis (b).

Table S1. ICP	' analysis	results of	f the	atomic	ratio	of elements
---------------	------------	------------	-------	--------	-------	-------------

element	weight percentage(%)	Atomic ratio
0	25.69	76.65
Ag	21.14	9.36
Eu	3.38	1.06
W	49.79	12.93

Figure S4. Emission decay curves of ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ emitting state under 270 nm excitation of the Ag₉[EuW₁₀O₃₆] micro-crystals (a) and the manually assembled film (b).

Table S2. Summary of luminescence data of $Ag_9[EuW_{10}O_{36}]$ micro-crystals and the film prepared by manual method

Sample	k _r (ms ⁻¹)	k _{nr} (ms ⁻¹)	k _{tot} (ms ⁻¹)	τ(ms)	η*
Ag ₉ [EuW ₁₀ O ₃₆] micro-crystals	0.1930	0.1296	0.3226	3.10	59.83%
Film prepared by manual method	0.1810	0.1506	0.3436	2.91	52.67%

*the value of η is calculated by incorporating fluorescence lifetimes into the formula (1), (2) and (3),

$$k_r = k_{r(0 \to 1)} \frac{\sum_{j=0}^{4} S_{(0 \to j)}}{S_{(0 \to 1)}}$$
(1)

where $k_r(0\rightarrow 1) = 1.35 \times 10^{-2} \text{ s}^{-1}$ stands for radioactive transition, S stands for integral area of characteristic Eu(III) ion emission.

$$k_{tot} = \frac{1}{\tau} = k_r + k_{nr} \tag{2}$$

where τ stands for fluorescence life time k_{nr} stands for nonradioactive transition.

$$\eta = \frac{k_r}{k_r + k_{nr}} \tag{3}$$