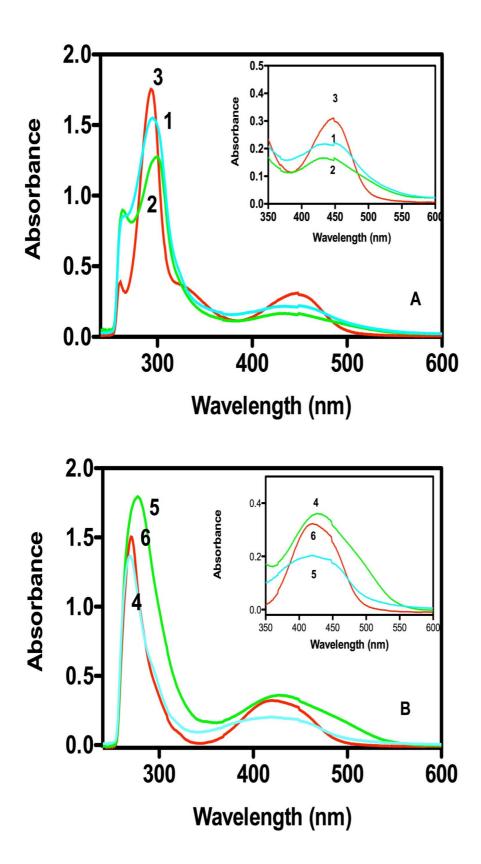
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017


SUPPLEMENTARY MATERIAL

Ru(II)-(PTA) and -mPTA complexes with N₂-donor Ligands Bipyridyl and Phenanthroline and their Antiproliferative Activities on Human Multiple Myeloma Cell Lines.

Aleksandra Wołoszyn,^a Claudio Pettinari,^{*,b} Riccardo Pettinari,^b Gretta Veronica,^b Badillo Patzmay,^b Anna Kwiecień,^a Giulio Lupidi,^b Massimo Nabissi,^b Giorgio Santoni,^b and Piotr Smoleński^{*,a}

^a Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; ^b School of Pharmacy, University of Camerino, via S. Agostino 1, 62032 Camerino MC, Italy.

KEYWORDS. Ruthenium, PTA, mPTA, Metal-based drugs.

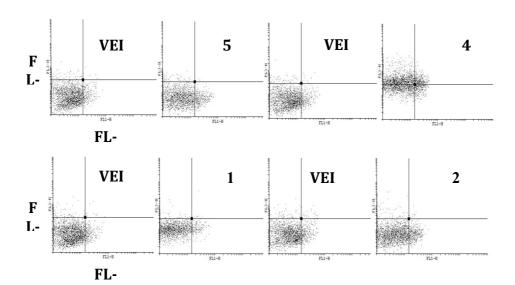
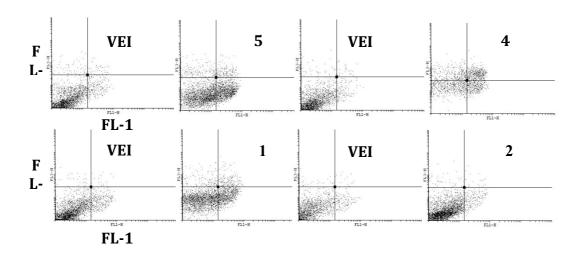

Figure 1S. Absorption spectral traces of complexes **1-6** in DMSO. Panel **A**, complex **1**(95 μ M, complex **2**(40 μ M), complex **3**(45 μ M). Panel **B**. complex **4**(30 μ M), complex **5**(60 μ M), complex **6**(70 μ M).

Table 1S. Wavelength (λ_{max}) and molar absorption values (ϵ) of different complexes in DMSO.

Complex	λ _{max} (nm)	ε (M ⁻¹ cm ⁻¹)
1	296	23306
		1709
	434	
2	301	18543
		3729
	437	
3	294	24146
		4269
	443	
4	270	26100
	422	6283
5	271	21750
	422	2483
6	273	28702
	404	6164


COMPOUND (µM)	AnnV- PI+	AnnV+ PI+	AnnV· PI·	Annv ⁺ PI ⁻	
Vehicle 5	2.78±0.4	0.03 ±0.0	94.1±5.4	3.1±0.2	
5, (80)	1.9±0.7	0±0.0	92.3±6.3	5.9±0.4	
Vehicle 4	2.4±1.1	0.1±0.0	93.7±4.3	3.7±0.2	
4, (50)	24.9±2.4*	1.6±0.2	66.7±3.5*	6.7±0.3	
Vehicle 1	2±0.1	0.06±0.0	95±6.2	2.8±0.1	
1, (120)	1.6±0.2	0±0.0	95.7±6.5	2.6±0.2	
Vehicle 2	2.2±0.2	0.2±0.0	92.5±5.8	5.1±0.3	
2, (140)	2.7±0.1	0.05±0.0	90.6±7.1	6.6±0.2	

RPMI

Figure 25. Complexes inducing cell death. RPMI treated with the appropriate dose for each compound, were analysed for the percentage of PI $^+$ and Ann-V $^+$ cells by FACS analysis. Dot Plot are representative of one of three independent experiments. The values in the table represent the percentage of cells in each quadrant and are expressed as mean \pm SD. * p < 0.05 vs vehicle treated cells.

COMPOUND (µM)	AnnV- PI+	AnnV+ PI+	AnnV- PI-	Annv+ PI-
Vehicle 5	1.3±0.1	0.4 ±0.0	94.9±3.4	3.36±0.2
5, (120)	6.3±0.3*	1.5±0.1	70.1±4.2*	22.05±1.3*
Vehicle 4	1.7±0.1	0.3±0.0	96.3±5.3	1.65±0.3
4, (100)	17.7±0.2*	9.6±0.2	60.7±4.2	11.9±1.1
Vehicle 1	0.7±0.0	0.15±0.0	94.2±5.3	4.9±0.3
1, (180)	4.5±0.3*	1.9±0.1	78.3±5.2*	15.3±0.9*
Vehicle 2	1.3±0.2	0.1±0.0	96.4±6.1	2.1±0.1
2, (180)	1.3±0.1	0.1±0.0	95.4±5.8	3.04±0.1

Figure 35. Complexes inducing cell death. U266 treated with the appropriate dose for each compound, were analysed for the percentage of PI⁺ and Ann-V⁺ cells by FACS analysis. Dot Plot are representative of one of three independent experiments. The values in the table represent the percentage of cells in each quadrant and are expressed as mean \pm SD. * p < 0.05 vs vehicle treated cells.

U266

CELL CYCLE ANALYSIS

TABLE S2 RPMI

COMPLEX n°, (μM)	Sub-G0 % of cells	G0/G1 % of cells	S % of cells	G2/M % of cells
Vehicle 5	4.6 ±1	34.5±2	37.2±2	23.8±2
5, (80)	26.9±2*	26.2±2	11.3±1	34.6±3
Vehicle 4	3.94±0	36.41±2	34.02±2	27.6±2
4, (50)	64.8±5*	36.4±1	0.0±0	0.0±0
Vehicle 1	5.51±0	29.2±2	20.6±2	44.6±3
1, (120)	9.4±6*	36.6±1*	22.0±0	30.0±0
Vehicle 2	6.0±0	24.2±2	28.6±1	40.1±4
2, (140)	22.6±1*	37.9±1*	24.1±1	34.7±4

TABLE S3 U266

COMPLEX (µM)	Sub-G0 % of cells	G0/G1 % of cells	S % of cells	G2/M % of cells
Vehicle 5	0	60.2±6	21.3±1	18.4±1
5, (120)	0	84.8±6*	3.6±0	11.4±1
Vehicle 4	0	59.2±4	15.9±1	24.9±2
4, (100)	0	76.1±4*	10.2±1	12.8±1
Vehicle 1	0	53.7±5	19.6±1	26.7±2
1, (180)	0	65.3±4*	9.9±1	24.7±3
Vehicle 2	0	54.7±4	23.3±1	21.9±2
2, (180)	0	68.2±5*	14.3±1	29.4±2

Table S2, S3. Ru complexes in regulating cell cycle. A, B) Cell cycle analysis in RPMI and U266 cell lines treated with the appropriate dose of Ru complexed (complex number in the table). Cell cycle was performed by PI incorporation assay and FACS analysis, after 48 h post-treatments. Histograms are representative of one of three independent experiments. The dose for each compound was described in the table. The values represent the percentage of cells in each phase and are expressed as mean \pm SD. * p < 0.05 vs vehicle treated cells.