Supporting Information

Insertion Reactions of Small Unsaturated Molecules in N–B Bonds of Boron Guanidinates

Alberto Ramos,*^a Antonio Antiñolo,*^b Fernando Carrillo-Hermosilla,^b Rafael Fernández-Galán,^b María del Pilar Montero-Rama,^b Elena Villaseñor,^b Antonio Rodríguez-Diéguez,^c Daniel García-Vivó^d

^a Departamento de Química Inorgánica, Orgánica y Bioquímica, Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha, Campus Universitario, E-13071 Ciudad Real, Spain.

^b Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Campus Universitario, E-13071 Ciudad Real, Spain.

^c Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain.

^d Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain.

Table S1. Temperature (K), concentrations (mol/L) and equilibrium constants (K_{eq}) for the isonitrile de-insertion reaction of compound **10** at different temperatures in C₆D₆ $(K_{eq} = \frac{[11][CNAr]}{[4]})$. [Internal standard: tetrakis(trimethylsilyl)silane (TKS); [TKS] = 1.44 \cdot 10^{-2} M].

					1
T (K)	[11] (M)	[4] = [CNAr] (M)	K _{eq} (mol/L)	1/T (K ⁻¹)	Ln K _{eq}
298.15	0.025344	0.00864	0.00294545	0.00335402	-5.82749213
303.15	0.024912	0.011376	0.00519482	0.0032987	-5.26009315
313.15	0.020592	0.01512	0.0111021	0.00319336	-4.50062119
323.15	0.016992	0.020016	0.02357817	0.00309454	-3.74743402
333.15	0.009216	0.024336	0.06426225	0.00300165	-2.74478291
343.15	0.008064	0.027792	0.09578314	0.00291418	-2.34566857
353.15	0.004176	0.029088	0.20261297	0.00283166	-1.59645769

Figure S1. Van't Hoff plot (ln K_{eq} vs 1/T) for the isonitrile de-insertion reaction of compound **11.** Δ H^o = 66.6 ± 1.9 KJ mol⁻¹, Δ S^o = 175.6 ± 6.0 J mol⁻¹ K⁻¹.

Figure S2. Stacked ¹H VT NMR spectra recorded in C₆D₆ at 400 MHz for the isonitrile de-insertion reaction of compound **11** (*top*: full spectra; *bottom*: $CH^{-i}Pr$ area expanded; *TKS; # Compound **11**; ° Compound **4**).

Table S2. Temperature (K), concentrations (mol/L) and equilibrium constants (K_{eq}) for the isonitrile de-insertion reaction of compound **10** at different temperatures in C₆D₆ $(K_{eq} = \frac{[12][CNAr]}{[4]})$. [Internal standard: tetrakis(trimethylsilyl)silane (TKS); [TKS] = $1.51 \cdot 10^{-2}$ M].

T (K)	[12] (M)	[4] = [CNAr] (M)	K _{eq} (mol/L)	1/T (K ⁻¹)	Ln K _{eq}
298.15	0.0334152	0.0025704	0.00019772	0.00335402	-8.52864311
303.15	0.0328104	0.003024	0.00027871	0.0032987	-8.1853399
313.15	0.0316008	0.0048384	0.00074081	0.00319336	-7.20776954
323.15	0.0305424	0.0077112	0.00194689	0.00309454	-6.24152353
333.15	0.0276696	0.0108864	0.00428317	0.00300165	-5.45306101
343.15	0.0232848	0.0140616	0.00849175	0.00291418	-4.76866071
353.15	0.0185976	0.0176904	0.01682745	0.00283166	-4.08474358

Figure S3. Van't Hoff plot (ln Keq vs 1/T) for the isonitrile de-insertion reaction of compound **12**. Δ H^o = 72.2 ± 1.2 KJ mol⁻¹, Δ S^o = 170.9 ± 3.7 J mol⁻¹ K⁻¹.

Figure S4. Stacked ¹H VT NMR spectra recorded in C₆D₆ at 400 MHz for the isonitrile de-insertion reaction of compound **12** [*top*: full spectra; *bottom*: $CH^{-i}Pr$ and CH_3O area expanded; *TKS; # Compound **12**; ° Compound **4**; ¶ CN(*p*-MeO-C₆H₄)].

6.1 5.9 5.7 5.5 5.3 5.1 4.9 4.7 4.5 4.3 4.1 3.9 3.7 3.5 3.3 3.1 2.9 2.7 fl (ppm)

Figure S5. Stacked ¹H VT NMR spectra for compound **7a** in C₆D₆ at 500 MHz: (a) full spectra; (b) CH-^{*i*}Pr region expanded; (c) CH_3 -^{*i*}Pr and Me_2 -Xyl region expanded.

4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 fl (ppm)

2.9

Figure S6. Stacked ¹H VT NMR spectra for compound **9** in C₆D₆ at 500 MHz: (a) full spectra; (b) CH^{-i} Pr region expanded; (c) CH_{3}^{-i} Pr and Me_{2} -Xyl region expanded. [* signals due to a minor rotamer].

2.9 2.7 2.5 2.3 2.1 1.9 1.7 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 -0.1 -0.3 -0.5 -0.7 -0.9 f1(ppm)

Figure S7. Stacked ¹H VT NMR spectra for compound **16a** in CD_2Cl_2 at 500 MHz: (a) full spectra; (b) 3 to 10 ppm region expanded; (c) -1 to 3 ppm region expanded. [* signals due to a minor rotamer].

Figure S8. ¹H (top), ¹H-¹H COSY (bottom) NMR spectra for compound 1 in C_6D_6 (isomer mixture, 1-C and 1-M).

Figure S9. ¹H (top), ¹H-¹H COSY (bottom) NMR spectra for compound 1 in CD_2Cl_2 (isomer mixture, 1-C and 1-M).

Figure S10. ¹H (a), ¹³C{¹H} (b) and ¹¹B (c) NMR spectra in C_6D_6 solution, and ATR-IR spectrum (d) for compound **4**.

Figure S11. ¹H (a), ¹³C{¹H} (b) and ¹¹B (c) NMR spectra in C_6D_6 solution, and ATR-IR spectrum (d) for compound **5**.

Figure S12. ¹H (a), ¹³C{¹H} (b) and ¹¹B (c) NMR spectra in C_6D_6 solution, and ATR-IR spectrum (d) for compound **6**.

Figure S13. ¹H NMR spectrum in C₆D₆ solution at 298K of the reaction crude of **2** with CNXyl.* Compound **7a**; ° Compound **7b**; ¶ CNXyl; # (p-Me-C₆H₄N)C(NH^{*i*}Pr)₂.

Figure S14. ¹H (a), ¹³C{¹H} (b) NMR in C₆D₆ solution, ¹¹B NMR in tol- d_8 solution (c), and ATR-IR spectrum (d) for compound **7a**.

Figure S15. ¹H NMR spectrum in C₆D₆ solution at 298K of the reaction crude of **2** with $CN(p-MeO-C_6H_4)$. * Compound **8a**; ° Compound **8b**; ¶ $CN(p-MeO-C_6H_4)$.

Figure S16. ¹H (a), ¹³C{¹H} (b) NMR in C₆D₆ solution, ¹¹B NMR in tol- d_8 solution (c), and ATR-IR spectrum (d) for compound **8a**.

Figure S17. ¹H (a), ¹³C{¹H} (b) NMR in C₆D₆ solution, ¹¹B NMR in tol- d_8 solution (c), and ATR-IR spectrum (d) for compound **9**.

Figure S18. ¹H (a), ¹³C{¹H} (b) and ¹¹B (c) NMR spectra in C_6D_6 solution, and ATR-IR spectrum (d) for compound **10**.

Figure S19. ¹H (a), ¹³C{¹H} (b) NMR at 253 K, ¹¹B NMR at 298 K (c), in CD_2Cl_2 solution, and ATR-IR spectrum (d) for compound **11**.

Figure S20. ¹H (a), ¹³C{¹H} (b) and ¹¹B (c) NMR spectra in C₆D₆ solution, and ATR-IR spectrum (d) for compound **12**.

Figure S21. ¹H NMR at 333 K (a), ¹H (b), ¹³C{¹H} (c), ¹¹B (d) NMR at 298 K, in C_6D_6 solution, and ATR-IR spectrum (e) for compound **13**.

Figure S22. ¹H NMR spectrum in C_6D_6 solution at 298 K of the reaction crude of **4** with CO. [* Compound **14**; ° Compound **4**.]

Figure S23. ¹H NMR spectrum in C_6D_6 solution at 298 K of the reaction crude of **1** with benzaldehyde. [* Compound **15**; ° Compound **1**.]

Figure S24. ¹H NMR spectrum in C₆D₆ solution at 298 K of the reaction crude of **2** with benzaldehyde. [° Compound **16a**; * Compound **16b**; ¶ Compound **2**; # Benzaldehyde.]

Figure S25. ¹H (a), ¹³C{¹H} (b) and ¹¹B (c) NMR spectra in CD_2Cl_2 solution, and ATR-IR spectrum (d) for compound **16a**. [* C-O stretch from benzaldehyde]

Figure S26. ¹H NMR spectrum in C₆D₆ solution at 298 K of the reaction crude of **4** with benzaldehyde. [* Compound **17**; ° Compound **18**; ¶ Compound **4**.]

Figure S27. ¹H NMR spectrum in C_6D_6 solution at 298 K of the reaction crude of **2** with CO_2 . [* Compound **19**; ° Compound **2**.]

Figure S28. Optimised structures for compounds **9** (a), **10** (b), **11** (c) and **12** (d). Colour code: C, green; B, pink; N, blue; O, red. [*Left*: H atoms omitted only. *Right*: More atoms omitted to focus on heterocycle ring].

Figure S29. Optimised constrained structure for compound **11** with a planar fivemembered heterocyclic ring. Colour code: C, green; B, pink; N, blue. [*Left*: H atoms omitted only. *Right*: More atoms omitted to focus on heterocycle ring].