Supporting Information for

Triaminoborane-Bridged Diphosphine Complexes with Ni and Pd: Coordination Chemistry, Structures, and Ligand-Centered Reactivity

Kyounghoon Lee, Courtney M. Donahue, Scott R. Daly*

The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242-1294

Table of Contents

Molecular Structure of 3	pp. 2
Crystallographic Data	pp. 3 – 4
NMR Spectra	pp. 5 – 56

Figure S1. Molecular structure of (${}^{Ph}TBDPhos$)PdCl₂ (**3**) with thermal ellipsoids at the 35% probability level. Hydrogen atoms were omitted from the figure.

	^{Ph} TBDPhos	^{iPr} TBDPhos	1	2	3	4
formula	$C_{32}H_{36}BCl_4N_3P_2$	$C_{18}H_{40}BN_3P_2 \\$	C ₁₆ H ₁₇ B _{0.5} Cl ₄ N _{1.5} Ni _{0.5} P	$C_{18}H_{40}BCl_2N_3NiP_2$	$C_{30}H_{32}BCl_2N_3P_2Pd$	$C_{18}H_{40}BCl_2N_3P_2Pd$
FW (g mol ⁻¹)	677.19	371.28	437.75	500.89	684.63	548.58
crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic
space group	C2/c	$P2_1/c$	P-1	C2/c	$P2_1/c$	$P2_1/n$
a (Å)	22.219(2)	8.6254(9)	9.9895(10)	12.6274(13)	12.9178(13)	8.8840(9)
b (Å)	13.6886(14)	15.2128(15)	12.2230(12)	10.9057(11)	13.3011(13)	17.2077(17)
c (Å)	13.9571(14)	17.6220(18)	16.8174(17)	17.6347(18)	18.1092(18)	16.0964(16)
α (deg)	90	90	90.040(5)	90	90	90
β (deg)	127.323(5)	101.400(5)	103.664(5)	101.618(5)	104.019(5)	94.786(5)
γ (deg)	90	90	106.259(5)	90	90	90
volume (Å ³)	3375.8(6)	2266.7(4)	1910.6(3)	2378.7(4)	3018.9(5)	2452.1(4)
Z	8	4	4	4	4	4
ρ_{calc} (g cm ⁻³)	1.332	1.088	1.522	1.399	1.506	1.486
μ (mm ⁻¹)	0.473	0.197	1.179	1.184	0.923	1.115
F(000)	1408	816	892	1064	1392	1136
θ range (deg)	2.92/27.37	2.93/27.94	2.45/27.41	2.49/26.36	2.92/29.04	2.59/27.97
R(int)	0.0440	0.0574	0.0500	0.0309	0.0294	0.0351
data/restraints/parameters	4062/0/191	5424/0/225	8798/0/426	2444/0/128	8050/0/352	5882/0/252
GOF	1.050	1.021	1.026	1.035	1.079	1.023
$R_1 [I > 2\sigma(I)]^a$	0.0331	0.0369	0.0355	0.0239	0.0233	0.0245
wR ₂ (all data) ^b	0.0872	0.0998	0.0941	0.0578	0.0558	0.0577
Ext. Coeff	-	-	-	-	-	-
Largest Peak/Hole (e·Å-3)	0.372/-0.372	0.399/-0.265	0.889/-0.943	0.320/-0.224	0.439/-0.422	0.470/-0.329
Temp (K)	190(2)	190(2)	190(2)	190(2)	190(2)	190(2)

Table S1. Crystallographic data for ^{Ph}TBDPhos, ^{iPr}TBDPhos, (^{Ph}TBDPhos)NiCl₂ (1), (^{iPr}TBDPhos)NiCl₂ (2), (^{Ph}TBDPhos)PdCl₂ (3), and (^{iPr}TBDPhos)PdCl₂ (4).

 ${}^{a}\mathbf{R}_{1} = \sum |F_{o}| - |F_{c}|| / |\sum |F_{o}|$ for reflections with $F_{o}^{2} > 2 \sigma(F_{o}^{2})$.

 ${}^{b}wR_{2} = \left[\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum (F_{o}^{2})^{2}\right]^{1/2}$ for all reflections.

	5	7	8	9	10
formula	C ₃₀ H ₃₅ BClN ₃ NiO ₂ P	C31H36BCl2N3NiOP	C31H36BCl2N3OP2Pd	C33H38BCl2N3OP2Pd	$C_{62}H_{72}B_2Cl_6F_2N_6Ni_2O_2P_4$
FW (g mol ⁻¹)	636.52	668.99	716.68	742.71	964.58
crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
space group	$P2_1/n$	$P2_1/c$	$P2_1/c$	$P2_1/c$	$P2_1/n$
a (Å)	13.8071(14)	10.9172(11)	10.9956(11)	10.8193(11)	12.3721(12)
b (Å)	11.3545(11)	21.128(2)	21.129(2)	22.229(2)	32.375(3)
c (Å)	20.486(2)	14.1842(14)	14.3055(14)	14.5574(15)	16.7696(17)
a (deg)	90	90	90	90	90
β (deg)	106.374(5)	110.222(5)	110.691(5)	110.787(5)	91.629(5)
γ (deg)	90	90	90	90	90
volume (Å ³)	3081.4(5)	3070.0(5)	3109.2(5)	3273.2(6)	6714.3(11)
Z	4	4	4	4	4
ρ_{calc} (g cm ⁻³)	1.372	1.447	1.531	1.507	1.431
μ (mm ⁻¹)	0.852	0.941	0.902	0.860	0.948
F(000)	1328	1392	1464	1520	2992
θ range (deg)	1.00/25.35	2.46/24.33	2.24/29.03	2.21/28.33	2.25/27.81
R(int)	0.0718	0.0739	0.0466	0.0241	0.0471
data/restraints/parameters	5637/3/373	6368/0/372	7766/0/375	8150/0/400	15831/1/783
GOF	0.881	0.912	1.039	1.056	0.855
$\mathbf{R}_1 \left[I > 2\sigma(I) \right]^{\mathbf{a}}$	0.0391	0.0408	0.0334	0.0212	0.0378
wR ₂ (all data) ^b	0.1320	0.1391	0.1263	0.0564	0.0985
Ext. Coeff	-	0.0020(6)	-	-	-
Largest Peak/Hole (e·Å-3)	0.290/-0.340	0.564/-0.589	1.032/-0.973	0.425/-0.398	1.097/-1.203
Temp (K)	190(2)	190(2)	190(2)	170(2)	190(2)

Table S2. Crystallographic data for $\{[(^{Ph}TBDPhos-H_2O)Ni]_2(\mu-OH)_2\}Cl_2(5), (^{Ph}TBDPhos-MeOH)NiCl_2(7), (^{Ph}TBDPhos-MeOH)PdCl_2(8), (^{Ph}TBDPhos-C_3H_5OH)PdCl_2(9), and <math>\{[(^{Ph}TBDPhos-HF)Ni]_2(\mu-OH)_2\}Cl_2(10).$

 ${}^{a}\mathbf{R}_{1} = \sum |F_{o}| - |F_{c}|| / |\sum |F_{o}|$ for reflections with $F_{o}^{2} > 2 \sigma(F_{o}^{2})$.

 ${}^{b}wR_{2} = \left[\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum (F_{o}^{2})^{2}\right]^{1/2}$ for all reflections.

Figure S2. ¹H NMR spectrum of TBD.

Figure S3. ¹¹B NMR spectrum of TBD.

Figure S4. ¹H NMR spectrum of ^{Ph}TBDPhos.

Figure S5. ¹³C NMR spectrum of ^{Ph}TBDPhos.

Figure S6. ¹¹B NMR spectrum of ^{Ph}TBDPhos

Figure S7. ${}^{31}P{}^{1}H$ NMR spectrum of ${}^{Ph}TBDPhos$.

Figure S8. ¹H NMR spectrum of ^{iPr}TBDPhos. The * symbol indicates resonances assigned to residual Et₂O and pentane solvent.

Figure S9. ¹³C NMR spectrum of ^{iPr}TBDPhos.

Figure S10. ¹¹B NMR spectrum of ^{iPr}TBDPhos.

Figure S11. ${}^{31}P{}^{1}H$ NMR spectrum of ${}^{iPr}TBDPhos$.

Figure S12. ¹H NMR spectrum of ($^{Ph}TBDPhos$)NiCl₂ (1). The * symbol indicates resonances assigned to residual CH₂Cl₂ and Et₂O solvent.

Figure S13. ¹³C NMR spectrum of (^{Ph}TBDPhos)NiCl₂ (1). The * symbol indicates a resonance assigned to residual CH₂Cl₂ solvent.

Figure S14. ¹¹B NMR spectrum of ($^{Ph}TBDPhos$)NiCl₂ (1).

Figure S15. ${}^{31}P{}^{1}H$ NMR spectrum of (${}^{Ph}TBDPhos$)NiCl₂ (1).

Figure S16. ¹H NMR spectrum of (iPr TBDPhos)NiCl₂ (**2**). The * symbol indicates resonances assigned to residual CH₂Cl₂ and Et₂O solvent.

Figure S17. ¹³C NMR spectrum of (^{iPr}TBDPhos)NiCl₂ (2).

Figure S18. ¹¹B NMR spectrum of (^{iPr}TBDPhos)NiCl₂ (**2**).

Figure S19. ³¹P $\{^{1}H\}$ NMR spectrum of (^{iPr}TBDPhos)NiCl₂ (**2**).

Figure S20. ¹H NMR spectrum of ($^{Ph}TBDPhos$)PdCl₂ (**3**). The * symbol indicates resonances assigned to residual CH₂Cl₂ and Et₂O solvent.

Figure S21. ¹³C NMR spectrum of (^{Ph}TBDPhos)PdCl₂ (**3**). The * symbol indicates a resonances assigned to residual CH₂Cl₂.

Figure S22. ¹¹B NMR spectrum of (^{Ph}TBDPhos)PdCl₂ (**3**).

Figure S23. ${}^{31}P{}^{1}H$ NMR spectrum of (${}^{Ph}TBDPhos$)PdCl₂ (**3**).

Figure S24. ¹H NMR spectrum of (^{iPr}TBDPhos)PdCl₂ (**4**).

Figure S25. ¹³C NMR spectrum of (^{iPr}TBDPhos)PdCl₂ (4).

Figure S26. ¹¹B NMR spectrum of (^{iPr}TBDPhos)PdCl₂ (4).

Figure S27. ³¹P $\{^{1}H\}$ NMR spectrum of (^{iPr}TBDPhos)PdCl₂ (4).

Figure S28. ¹H NMR spectrum of $\{[({}^{Ph}TBDPhos-H_2O)Ni]_2(\mu-OH)_2\}Cl_2(5)$. The * symbol indicates resonances assigned to added NEt₃. The inset shows the upfield shift assigned to the bridging hydroxide.

Figure S29. ¹³C NMR spectrum of {[($^{Ph}TBDPhos-H_2O$)Ni]₂(μ -OH)₂}Cl₂ (**5**). The * symbol indicates resonances assigned to added NEt₃, and the # symbol indicates resonances assigned to **1**.

Figure S30. ¹¹B NMR spectrum of $\{[({}^{Ph}TBDPhos-H_2O)Ni]_2(\mu-OH)_2\}Cl_2$ (5) taken before overnight ¹³C NMR data collection.

Figure S31. ¹¹B NMR spectrum of {[($^{Ph}TBDPhos-H_2O$)Ni]₂(μ -OH)₂}Cl₂ (5) taken after overnight ¹³C NMR data collection. The # symbol indicates the broad resonance assigned to 1.

Figure S32. ${}^{31}P{}^{1}H$ NMR spectrum of {[(${}^{Ph}TBDPhos-H_2O$)Ni]₂(μ -OH)₂}Cl₂ (5).

Figure S33. ¹H NMR spectrum of $\{[({}^{Ph}TBDPhos-H_2O)Pd]_2(\mu-OH)_2\}Cl_2(6)$. The * symbol indicates resonances assigned to added NEt₃.

Figure S34. ¹³C NMR spectrum of $\{[(^{Ph}TBDPhos-H_2O)Pd]_2(\mu-OH)_2\}Cl_2(6)$. The * symbol indicates resonances assigned to added NEt₃.

Figure S35. ¹¹B NMR spectrum of $\{[(^{Ph}TBDPhos-H_2O)Pd]_2(\mu-OH)_2\}Cl_2$ (6).

Figure S36. ${}^{31}P{}^{1}H$ NMR spectrum of {[(${}^{Ph}TBDPhos-H_2O$)Pd]₂(μ -OH)₂}Cl₂ (6).

Figure S37. ¹H NMR spectrum of (^{Ph}TBDPhos-MeOH)NiCl₂ (7). The * symbol indicates resonances assigned to added NEt₃.

Figure S38. ¹³C NMR spectrum of (^{Ph}TBDPhos-MeOH)NiCl₂ (7). The * symbol indicates resonances assigned to added NEt₃.

Figure S39. ¹¹B NMR spectrum of (^{Ph}TBDPhos-MeOH)NiCl₂ (7).

Figure S40. ³¹P{¹H} NMR spectrum of (^{Ph}TBDPhos-MeOH)NiCl₂ (7).

Figure S41. ¹H NMR spectrum of ($^{Ph}TBDPhos-MeOH$)PdCl₂ (8). The * symbol indicates resonances assigned to H₂O and CH₂Cl₂. The # symbol indicates resonances assigned to free MeOH. The ‡ symbol indicates resonances assigned to added NEt₃.

Figure S42. ¹³C NMR spectrum of ($^{Ph}TBDPhos-MeOH$)PdCl₂ (8). The * symbol indicates resonances assigned to CH₂Cl₂ and free MeOH. The # symbol indicates unassigned peak which had been growing during overnight data collection. The ‡ symbol indicates resonances assigned to added NEt₃.

Figure S43. ¹¹B NMR spectrum of (^{Ph}TBDPhos-MeOH)PdCl₂ (8).

Figure S44. ${}^{31}P{}^{1}H$ NMR spectrum of (${}^{Ph}TBDPhos-MeOH$)PdCl₂ (8).

Figure S45. ¹H NMR spectrum of (^{Ph}TBDPhos-C₃H₅OH)PdCl₂ (9). The * symbol indicates resonances assigned to added NEt₃.

Figure S46. ¹³C NMR spectrum of (^{Ph}TBDPhos-C₃H₅OH)PdCl₂ (9). The * symbol indicates resonances assigned to added NEt₃.

Figure S48. ${}^{31}P{}^{1}H$ NMR spectrum of (${}^{Ph}TBDPhos-C_{3}H_{5}OH$)PdCl₂ (9).

Figure S49. ¹H NMR spectrum of $\{[(^{Ph}TBDPhos-HF)Ni]_2(\mu-OH)_2\}Cl_2$ (10).

Figure S50. ¹³C NMR spectrum of $\{[(^{Ph}TBDPhos-HF)Ni]_2(\mu-OH)_2\}Cl_2$ (10).

Figure S51. ¹¹B NMR spectrum of $\{[(^{Ph}TBDPhos-HF)Ni]_2(\mu-OH)_2\}Cl_2$ (10).

Figure S52. ³¹P{¹H} NMR spectrum of {[($^{Ph}TBDPhos-HF$)Ni]₂(μ -OH)₂}Cl₂ (10).

Figure S53. ¹⁹F NMR spectrum of $\{[(^{Ph}TBDPhos-HF)Ni]_2(\mu-OH)_2\}Cl_2$ (10).