Supplementary Information

Cationic 2,2'-bipyridine Complexes of Germanium(II) and Tin(II)

Paul A. Gray,^a Katherine D. Krause,^a Neil Burford, *a and Brian O. Patrick^b

^aDepartment of Chemistry, University of Victoria, P.O Box 3065, Stn. CSC,

Victoria, Canada

E-mail: nburford@uvic.ca

^bDepartment of Chemistry, University of British Columbia, Vancouver, BC, V6T

1Z1, Canada

Table of Contents

Experimental Details	S2
Crystallographic Details	
Cartesian Coordinates of Optimized Geometries	S11
References	

Experimental Details

All reactions were carried out in a MBraun glove box under an N₂ atmosphere. Solvents were dried over CaH₂ or Na/Benzophenone and stored over molecular sieves (3 Å: MeCN, 4 Å: Et₂O, CH₂Cl₂, DMSO) unless otherwise specified. Anhydrous MeCN-d₃ was purchased from Aldrich and stored over molecular sieves for 48 hours prior to use. GeCl₂·Dioxane and SnCl₂ were purchased from Sigma-Aldrich and used as received. 2,2'-bipyridine was purchased from Sigma-Aldrich and recrystallized from CH₂Cl₂ prior to use. Trimethylsilyl trifluoromethanesulfonate (TMSOTf) was purchased from Sigma-Aldrich and distilled prior to use.

Solution ¹H, ¹³C, ¹⁹F and ¹¹⁹Sn NMR spectra were collected at room temperature on a Bruker AVANCE 300 (7.02 T) or Bruker Avance 360 (8.4 T) NMR spectrometers, with relative frequencies and temperatures explicitly given for each compound. Chemical shifts are reported in ppm relative to trace protonated solvent (¹H), perdeuterated solvent (¹³C), or an external reference standard (¹¹⁹Sn, Sn(CH₄)₄; ¹⁹F, CFCl₃). NMR spectra of reaction mixtures were obtained by transferring an aliquot of the bulk solution to a 5 mm NMR tube, which was then capped and sealed with Teflon tape.

Infrared spectra were collected on samples using Nujol mull using a Perkin-Elmer Spectru, FT-IR spectrometer and peaks are reported in wavenumbers (cm⁻¹). Melting points were obtained on samples sealed in glass capillaries under dry nitrogen using an Electrothermal apparatus. Elemental analyses were performed on selected compounds by Canadian Microanalytical Services Ltd., Delta, British Columbia, Canada.

Unless otherwise stated, crystals for single crystal X-ray diffraction studies were obtained by vapor diffusion at room temperature or from slow diffusion of a layered non-solvent into a saturated solution of the compound at -35°C. Single crystal X-ray diffraction data were collected

S2

on a Bruker D8 Apex II diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at room temperature. Data were collected and integrated using the Bruker SAINT software package.¹ Absorption corrections were performed using the multi-scan technique (SADABS).² The structures were solved by intrinsic phasing using SHELXT³ and refined using all reflections with SHELXL.⁴ All non hydrogen atoms were refined anisotropically. Structures were solved and refined using Olex2 package.⁵ Crystallographic information files have been deposited in the Cambridge Structural Database (CSD) with numbers 1546731, 1546732, and 1546733 for [(bipy)GeCl][OTf], [(bipy)₂Ge][OTf]₂, and[(bipy)₂Sn][OTf]₂ respectively. Quantum chemical calculations were carried out using Gaussian 09.⁶

Synthesis of [(bipy)GeCl][OTf] – Method A: GeCl₂·dioxane (2 mmol, 0.463g), TMSOTf (2 mmol, 362 μ L) and 2,2'-bipyridine (2 mmol, 0.312 g) were combined in 5 mL CH₃CN to obtain a colourless, cloudy mixture which was stirred for 2 hours. Removal of the solvent under reduced pressure gave the product as a fine colourless powder. The powder was washed with CH₂Cl₂ and Et₂O and re-dissolved in a minimum volume of CH₃CN. The resulting solution was filtered, layered with Et₂O, and placed in a freezer at -35°C for 48 hours to obtain colourless crystalline material.

Method B: GeCl₂·dioxane (2 mmol, 0.463g) and 2,2'-bipyridine (2 mmol, 0.312 g) were combined in 5 mL CH₂Cl₂ to immediately give a bright yellow suspension, which was stirred for 1 hour. Removal of the solvent under reduced pressure gave a dark yellow powder as the previously characterized neutral adduct. The powder was subsequently re-suspended in CH₃CN, and to this mixture was added TMSOTf (2 mmol, 362 μ L), giving a slightly cloudy, colourless mixture after 2 hours. Removal of the solvent gave the title product as a colourless powder. The powder was washed with CH₂Cl₂ and Et₂O and re-dissolved in a minimum volume of CH₃CN. The resulting solution was filtered, layered with Et_2O , and placed in a freezer at -35°C for 48 hours to obtain colourless crystalline material.

Yield: 0.726 g (88%); ¹H NMR, ppm (CD₃CN, 298K, 300.1 MHz) $\delta = 8.05$ (ddd, J = 7.6, 5.6, 1.2 Hz, 2H), 8.55 (td, J = 7.6, 1.5 Hz, 2H), 8.66 (*pseudo dt*, J = 8.1, 1.1 Hz, 2H), 9.12 (ddd, J = 5.6, 1.5, 0.9 Hz, 2H; ¹³C{¹H} NMR, ppm (CD₃CN, 298K, 75.5 MHz): $\delta = 124.3$ (s), 128.9 (s), 144.8 (s), 146.0 (s), 148.8 (s); ¹⁹F{¹H} NMR, ppm (CD₃CN, 298K, 282.5 MHz) $\delta = -79.2$ (s); Melting point: 205-206°C; IR, Nujol mull, cm⁻¹: 3118, 2921, 2853, 2325, 1621, 1605, 1581, 1576, 1506, 1480, 1466, 1453, 1441, 1377, 1326, 1291, 1276, 1266, 1248, 1219, 1185, 1150, 1109, 1058, 1049, 1039, 1024, 1019, 984, 921, 776, 770, 726, 658, 649, 635, 576, 572;

Synthesis of $[(bipy)_2Ge][OTf]_2 - Method A: GeCl_2 \cdot dioxane (2 mmol, 0.463g), TMSOTf (4 mmol, 724 µL) and 2,2'-bipyridine (4 mmol, 0.624 g) were combined in 5 mL CH₃CN to obtain a clear, yellow solution which was stirred for 2 hours. Removal of the solvent under reduced pressure gave a fine yellow powder. The powder was washed with CH₂Cl₂ and Et₂O and redissolved in a minimum volume of CH₃CN. The resulting solution was filtered, layered with Et₂O, and placed in a freezer at -35°C for 48 hours to obtain yellow crystalline material.$

Method B: GeCl₂·dioxane (2 mmol, 0.463g) and 2,2'-bipyridine (2 mmol, 0.312 g) were combined in 5 mL CH₂Cl₂ to immediately give a bright yellow suspension, which was stirred for 1 hour. Removal of the solvent under reduced pressure gave a dark yellow powder as the previously characterized neutral adduct. The powder was subsequently re-suspended in CH₃CN, and to this mixture was added TMSOTf (4 mmol, 724 μ L), giving first a cloudy, colourless mixture, turning to a clear, yellow solution which was stirred for 2 hours. Removal of the solvent under reduced pressure gave a fine yellow powder. The powder was washed with CH₂Cl₂ and Et₂O and re-dissolved in a minimum volume of CH₃CN. The resulting solution was filtered,

S4

layered with Et_2O , and placed in a freezer at -35°C for 48 hours to obtain yellow crystalline material.

Yield: 1.175 g (86%); ¹H NMR, ppm (CD₃CN, 298K, 300.1 MHz) δ = 7.89 (t, broad, *J* = 6.5 Hz, 2H), 8.48 (td, broad, *J* = 7.9, 1.2 Hz, 2H), 8.69 (d, broad, *J* = 8.2 Hz, 2H), 8.86 (d, broad, *J* = 4.9 Hz, 2H; ¹³C {¹H} NMR, ppm (CD₃CN, 298K, 75.5 MHz): δ = 124.5 (s), 128.5 (s), 143.9 (s), 147.4 (s), 159.1 (s); ¹⁹F {¹H} NMR, ppm (CD₃CN, 298K, 282.5 MHz) δ = -79.3 (s); Melting point: 195-196°C; (dec) IR, Nujol mull, cm⁻¹: 3091, 2953, 2921, 2853, 2342, 1610, 1604, 1594, 1583, 1562, 1509, 1462, 1446, 1377, 1317, 1281, 1254, 1234, 1224, 1191, 1152, 1112, 1099, 1088, 1031, 1021, 971, 943, 819, 772, 757, 734, 723, 654, 648, 637, 630, 612, 573; Elemental Analysis including 0.75 molecules of CH₂Cl₂ (Calc/Exp): C (36.59/36.52); H (2.36/2.13); N (7.50/7.53) for crystalline sample with yield of 0.093g

Synthesis of [(bipy)SnCl][OTf] – Method A: SnCl₂ (2 mmol, 0.379g), TMSOTf (2 mmol, 362 μ L) and 2,2'-bipyridine (2 mmol, 0.312 g) were combined in 5 mL CH₃CN to obtain a colourless suspension which was stirred for 2 hours. Removal of the solvent under reduced pressure gave the product as a fine colourless powder. The powder was washed with CH₂Cl₂ and Et₂O and pumped dry. Due to it's low solubility in CH₂Cl₂ and CH₃CN, crystalline material suitable for x-ray analysis could not be isolated. However, the analysis of the bulk material was consistent with the title compound.

Method B: SnCl₂ (2 mmol, 0.379g) and 2,2'-bipyridine (2 mmol, 0.312 g) were combined in 5 mL CH₂Cl₂ to immediately give a bright yellow suspension, which was stirred for 1 hour. Removal of the solvent under reduced pressure gave a dark yellow powder as the previously characterized neutral adduct. The powder was subsequently re-suspended in CH₃CN, and to this mixture was added TMSOTf (2 mmol, 362 μ L), giving a colourless suspension after 2 hours. Removal of the solvent gave the title product as a colourless powder. The powder was washed with CH₂Cl₂ and Et₂O and pumped dry. Due to it's low solubility in CH₂Cl₂ and CH₃CN, crystalline material suitable for x-ray analysis could not be isolated. However, the analysis of the bulk material was consistent with the title compound. Yield: 0.827 g (90%); ¹H NMR, ppm (CD₃CN/DMSO, 298K, 300.1 MHz) δ = 7.63 (ddd, *J* = 7.6, 5.3, 1.2 Hz, 2H), 8.11 (td, *J* = 7.8, 1.8 Hz, 2H), 8.45 (*pseudo dt*, *J* = 7.9, 1.1 Hz, 2H), 8.91 (ddd, *J* = 5.3, 1.8, 0.9 Hz, 2H;. ¹³C {¹H} NMR, ppm (CD₃CN/DMSO, 298K, 75.5 MHz): δ = 123.3 (s), 126.8 (s), 141.0 (s), 149.3 (s), 153.6 (s); ¹⁹F {¹H} NMR, ppm (CD₃CN, 298K, 282.5 MHz) δ = -79.2 (s); ¹¹⁹Sn {¹H} NMR, ppm, (CD₃CN/DMSO, 298K, 134.3 MHz) δ = -577.0 (s); Melting point: 211-212°C; IR, Nujol mull, cm⁻¹: 3113, 2921, 2853, 2724, 2364, 1610, 1601, 1576, 1567, 1502, 1463, 1448, 1377, 1324, 1292, 1271, 1250, 1219, 1188, 1160, 1151, 1114, 1108, 1074, 1064, 1044, 1019, 979, 909, 771, 767, 757, 730, 671, 654, 638, 633, 576, 572; Elemental Analysis (Calc/Exp): C (28.76/28.56); H (1.76/1.68); N (6.10/5.98).

Synthesis of $[(bipy)_2Sn][OTf]_2]$ – Method A: SnCl₂ (2 mmol, 0.379g), TMSOTf (4 mmol, 724 μ L) and 2,2'-bipyridine (4 mmol, 0.624 g) were combined in 5 mL CH₃CN to obtain a clear, yellow solution which was stirred for 2 hours. Removal of the solvent under reduced pressure gave a fine yellow powder. The powder was washed with CH₂Cl₂ and Et₂O and re-dissolved in a minimum volume of CH₃CN. The resulting solution was filtered, layered with Et₂O, and placed in a freezer at -35°C for 48 hours to obtain yellow crystalline material.

Method B: SnCl₂ (2 mmol, 0.379g) and 2,2'-bipyridine (2 mmol, 0.312 g) were combined in 5 mL CH₂Cl₂ to immediately give a bright yellow suspension, which was stirred for 1 hour. Removal of the solvent under reduced pressure gave a dark yellow powder as the previously characterized neutral adduct. The powder was subsequently re-suspended in CH₃CN, and to this mixture was added TMSOTf (4 mmol, 724 μ L), giving first a colourless suspension, turning to a clear, yellow solution which was stirred for 2 hours. Removal of the solvent under reduced pressure gave a fine yellow powder. The powder was washed with CH₂Cl₂ and Et₂O and redissolved in a minimum volume of CH₃CN. The resulting solution was filtered, layered with Et₂O, and placed in a freezer at -35°C for 48 hours to obtain yellow crystalline material.

Yield: 1.283 g (88%); ¹H NMR, ppm (CD₃CN, 298K, 300.1 MHz) δ = 7.79 (ddd, *J* = 7.8, 5.3, 1.2 Hz, 2H), 8.33 (td, *J* = 7.9, 1.6 Hz, 2H), 8.51 (*pseudo dt*, *J* = 8.1, 1.0 Hz, 2H), 8.74 (ddd, *J* = 5.3, 1.8, 0.9 Hz, 2H;. ¹³C{¹H} NMR, ppm (CD₃CN, 298K, 75.5 MHz): δ = 125.3 (s), 129.0 (s), 143.7 (s), 149.3 (s), 151.5 (s); ¹⁹F{¹H} NMR, ppm (CD₃CN, 298K, 282.5 MHz) δ = -79.5 (s); ¹¹⁹Sn{¹H} NMR, ppm, (CD₃CN, 298K, 134.3 MHz) δ = -728.6 (s); Melting point 192°C (dec): IR, Nujol mull, cm⁻¹: 3068, 2924, 2853, 2725, 2258, 1605, 1598, 1578, 1567, 1495, 1467, 1445, 1377, 1321, 1276, 1296, 1276, 1238, 1222, 1158, 1135, 1025, 1013, 1004, 908, 808, 756, 748, 732, 653, 634, 627, 572; Elemental Analysis (Calc/Exp): C (36.24/35.89); H (2.21/2.07); N (7.68/7.51) for crystalline sample with yield of 0.113g.

Crystallographic Details

Data was collected on a Bruker X8 Apex II diffractometer with graphite-monocromated Mo K α radiation ($\lambda = 0.71073$ Å) at room temperature. Data were collected and integrated using the Bruker SAINT software package.¹ Absorption corrections were performed using the multi-scan technique (SADABS).² The structures were solved by intrinsic phasing using SHELXT³ and refined using all reflections with SHELXL.⁴ All non hydrogen atoms were refined anisoropically. Structures were solved and refined using Olex2 package.⁵

Compound	[GeCl(bipy)][OTf]
Empirical formula	$C_{11}H_8ClF_3GeN_2O_3S$
CCDC number	1546731
Formula weight	413.29
Temperature (K)	296.15
Crystal system	monoclinic
Space group	$P2_1/n$
a (Å)	7.5779(7)
b (Å)	16.7991(14)
c (Å)	11.0317(10)
α (°)	90
β(°)	93.030(3)
γ (°)	90
Volume (Å ³)	1402.4(2)
Z	4
$\rho_{\text{calc }}(g/\text{cm}^3)$	1.957
μ (mm ⁻¹)	2.571
F(000)	816.0
Crystal size (mm ³)	$0.21 \times 0.16 \times 0.12$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.422 to 60.082
Index ranges	$-10 \le h \le 10, -23 \le k \le 21, -15 \le 1 \le 14$
Reflections collected	14581
Independent reflections	$4100 [R_{int} = 0.0504, R_{sigma} = 0.0503]$
Structure solution method	intrinsic phasing
Refinement method	full-matrix least-squares on F ² (SHELXL-03)
Absorption correction	multi-scan (SADABS)
Data/restraints/parameters	4100/0/199
Goodness-of-fit on F ²	1.047
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0320, wR_2 = 0.0715$
Final R indexes [all data]	$R_1 = 0.0441, WR_2 = 0.0759$
Largest diff. peak/hole / e Å ⁻³	0.55/-0.35

 Table S1: Crystal data and refinement details for [GeCl(bipy)][OTf]

Compound	[Ge(bipy) ₂][OTf] ₂			
Empirical formula	$C_{24}H_{19}F_6GeN_5O_6S_2$			
CCDC number	1546732			
Formula weight	724.15			
Temperature (K)	273.15			
Crystal system	triclinic			
Space group	P-1			
a (Å)	9.6827(5)			
b (Å)	12.2345(7)			
c (Å)	13.5264(8)			
α (°)	105.9780(10)			
β (°)	96.5280(10)			
γ (°)	109.6380(10)			
Volume (Å ³)	1412.75(14)			
Z	2			
$\rho_{\text{calc }}(g/cm^3)$	1.702			
μ (mm ⁻¹)	1.321			
F(000)	728.0			
Crystal size (mm ³)	0.22 imes 0.16 imes 0.14			
Radiation	MoK α ($\lambda = 0.71073$)			
2Θ range for data collection/°	3.216 to 60.156			
Index ranges	$-13 \le h \le 13, -17 \le k \le 17, -19 \le l \le 19$			
Reflections collected	30486			
Independent reflections	$8260 [R_{int} = 0.0265, R_{sigma} = 0.0254]$			
Structure solution method	intrinsic phasing			
Refinement method	full-matrix least-squares on F ² (SHELXL-03)			
Absorption correction	multi-scan (SADABS)			
Data/restraints/parameters	8260/0/398			
Goodness-of-fit on F ²	1.044			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0244, wR_2 = 0.0613$			
Final R indexes [all data]	$R_1 = 0.0280, wR_2 = 0.0629$			
Largest diff. peak/hole / e Å ⁻³	0.47/-0.45			

Table S2: Crystal data and refinement details for [Ge(bipy)₂][OTf]₂

Compound [Sn(bipy)][OTf].		
Empirical formula	$\frac{[Sil(0ipy)_2][Oiij_2]}{CausHarrowClaFridder}$	
	1546733	
Eormula weight	960 10 860 10	
Tommerature (K)	206 15	
Crystal system	270.15 monoclinia	
Space group	D2 / n	
space group	$\Gamma Z_1/\Pi$ 0.2520(4)	
a(A)	9.5539(4) 10.7280(0)	
D (A)	19.7280(9)	
c(A)	17.8782(8)	
α (°)	90	
β (°)	103.627(2)	
γ (°)	90	
Volume (A ³)	3206.3(2)	
$L_{(-2)}$	4	
$\rho_{\text{calc}}(g/\text{cm}^3)$	1.786	
$\mu (mm^{-1})$	1.178	
F(000)	1711.0	
Crystal size (mm ³)	$0.41 \times 0.38 \times 0.14$	
Radiation	$MoK\alpha (\lambda = 0.71073)$	
2Θ range for data collection/°	3.124 to 60.206	
Index ranges	$-13 \le h \le 13, -27 \le k \le 24, -25 \le l \le 24$	
Reflections collected	36861	
Independent reflections	9384 [$R_{int} = 0.0361$, $R_{sigma} = 0.0376$]	
Structure solution method	intrinsic phasing	
Refinement method	full-matrix least-squares on F ² (SHELXL-03)	
Absorption correction	multi-scan (SADABS)	
Data/restraints/parameters	9384/1332/554	
Goodness-of-fit on F ²	1.206	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0567, wR_2 = 0.1135$	
Final R indexes [all data]	$R_1 = 0.0699, wR_2 = 0.1179$	
Largest diff. peak/hole / e Å ⁻³	1.32/-2.03	

Table S3: Crystal data and refinement details for [Sn(bipy)₂][OTf]₂

Cartesian Coordinates of Optimized Geometries

Geometries computed at the B3LYP/Def2TZVPP level of theory

[(bipy) ₂ Ge] ²⁺				[(bipy) ₂ Sn] ²⁺			
E = -3067.411353				E = -1204.766271			
Ge	0	0	-1.09773	Sn	0	0	-1.27441
Ν	-0.80637	-1.30335	0.37021	Ν	-0.84331	-1.42345	0.37529
Ν	0.80637	1.30335	0.37021	Ν	0.84332	1.42345	0.37529
Ν	2.11304	-0.73106	-0.72786	Ν	-2.25595	0.65156	-0.64837
Ν	-2.11303	0.73106	-0.72786	Ν	2.25595	-0.65156	-0.64838
С	2.14395	1.24258	0.59904	С	2.14227	1.30526	0.74336
С	2.88453	0.17495	-0.0999	С	-0.09007	-2.39514	0.91393
С	-2.14395	-1.24258	0.59904	Н	0.93781	-2.44614	0.58625
С	-2.75342	-2.15271	1.45588	С	-2.14227	-1.30526	0.74336
Н	-3.81431	-2.09123	1.64568	С	-4.28099	1.79176	-1.19682
С	-0.07456	-2.25287	0.97909	Н	-4.76993	2.59726	-1.72662
Н	0.98283	-2.25579	0.76581	С	4.3233	0.13428	0.22999
С	-0.629	-3.18136	1.83871	Н	4.88144	0.85282	0.81059
Н	0.00246	-3.92373	2.306	С	-2.90918	1.62738	-1.29157
С	0.07456	2.25287	0.9791	Н	-2.31176	2.293	-1.90398
Н	-0.98283	2.25578	0.76581	С	0.57855	3.2924	1.84548
С	-2.88453	-0.17494	-0.0999	Н	-0.06865	4.0587	2.24813
С	1.99524	3.13088	2.08071	С	2.90917	-1.62738	-1.29158
Н	2.46501	3.83941	2.75015	Н	2.31176	-2.293	-1.90399
С	0.62899	3.18136	1.83871	С	4.28099	-1.79176	-1.19683
Н	-0.00247	3.92372	2.306	Н	4.76993	-2.59726	-1.72663
С	-1.99524	-3.13088	2.08071	С	0.09007	2.39514	0.91393
Н	-2.46501	-3.83941	2.75015	Н	-0.93781	2.44614	0.58625
С	4.05191	-1.86786	-1.51936	С	2.93931	0.23197	0.10383
Н	4.47382	-2.68372	-2.08945	С	-2.68604	-2.17415	1.68568
С	4.27296	0.09538	-0.15768	Н	-3.71412	-2.06839	1.99602
Н	4.89479	0.83457	0.32488	С	2.68604	2.17415	1.68568
С	-2.67758	1.71717	-1.43479	Н	3.71412	2.06839	1.99602
Н	-2.006	2.39722	-1.94536	С	-2.93931	-0.23198	0.10383
С	2.75342	2.15271	1.45588	С	4.99731	-0.8901	-0.42113
Η	3.81431	2.09123	1.64568	Н	6.0724	-0.97352	-0.33147
С	2.67758	-1.71717	-1.43479	С	1.90342	3.17536	2.24067
Н	2.006	-2.39722	-1.94536	Н	2.32462	3.85198	2.97252
С	-4.27296	-0.09538	-0.15768	С	-4.99731	0.8901	-0.42113
Н	-4.89479	-0.83456	0.32489	Н	-6.0724	0.97351	-0.33147
С	-4.0519	1.86786	-1.51937	С	-0.57855	-3.29239	1.84548
Н	-4.47382	2.68372	-2.08945	Н	0.06865	-4.0587	2.24813

С	-4.8597	0.94284	-0.86926		С	-4.3233	-0.13428	0.22998
Н	-5.93754	1.01973	-0.9252]	Н	-4.88144	-0.85283	0.81059
С	4.85971	-0.94284	-0.86926	(С	-1.90341	-3.17536	2.24067
Н	5.93754	-1.01972	-0.9252]	Η	-2.32462	-3.85198	2.97252
	E = -3	032.554006						
Ge	0	-1.59209	-0.69704					
Cl	0.00001	-2.34161	1.39029					

CI	0.00001	-2.34161	1.39029
Ν	-1.30299	0.01573	-0.27102
Ν	1.30299	0.01574	-0.27102
С	-2.63232	-0.12135	-0.29424
Η	-3.01641	-1.10902	-0.51589
С	-3.4761	0.94597	-0.04051
Н	-4.54698	0.80283	-0.05952
С	-2.91274	2.18518	0.23448
Н	-3.54309	3.04135	0.43462
С	-1.5311	2.32167	0.2528
Н	-1.08407	3.28112	0.46615
С	-0.73709	1.21028	-0.00137
С	0.73708	1.21028	-0.00137
С	1.53109	2.32168	0.2528
Η	1.08405	3.28113	0.46615
С	2.91273	2.1852	0.23448
Н	3.54307	3.04136	0.43463
С	3.4761	0.94599	-0.04052
Η	4.54698	0.80285	-0.05952
С	2.63231	-0.12134	-0.29424
Η	3.01642	-1.10901	-0.51589

References

- 1. SAINT. Version 7.60A. Bruker AXS Inc., Madison, Wisconsin, USA (1997-2003).
- SADABS- 2008/1. Bruker AXS area detector scaling and adsorption correction, Bruker AXS Inc., Madison, Wisconsin, USA (2003).
- 3. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 2015, A71, 3-8.
- 4. G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112-122.

- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339–341.
- Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.