Electronic Supporting Information

A metalloporphyrin-based porous organic polymer as efficient

catalyst for the catalytic oxidation of olefins and arylalkanes

Zheng-Dong Ding,^a Wei Zhu,^a Tao Li,^a Rui Shen, ^a Yunxing Li,^a Zaijun Li,^a Xuehong Ren,^b and Zhi-Guo Gu^{*a}

^a Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
^b The Key Laboratory of Eco-textiles of Ministry of Education, College of Textiles and Clothing, Jiangnan University, Wuxi 214122, China

E-mail: zhiguogu@jiangnan.edu.cn

Fig. S1 ¹H NMR of 5, 10, 15, 20-Tetrakis(4-aminobiphenyl)porphyrin (TBPP).

Fig. S2 ¹³C NMR of 5, 10, 15, 20-Tetrakis(4-aminobiphenyl)porphyrin (TBPP).

Fig. S3 ¹H NMR of 1, 3, 5-Triformylphloroglucinol (TP) in CDCl₃.

Fig. S4 ¹³C NMR of 1, 3, 5-Triformyl phloroglucinol (TP) in CDCl₃. Aldehyde carbonyl (C=O) carbon resonate at =187.3ppm.

Fig. S5 FI-IR spectra of TBPP.

Fig. S6 UV-Vis spectra of TBPP and Mn-TBPP in the solution of DMF.

Fig. S7 FI-IR spectra of PPOP-1.

Fig. S8 FI-IR spectra of Mn-TBPP and Mn-PPOP-1.

Fig. S9 XRD patterns of (a) PPOP-1and (b) Mn-PPOP-1.

Fig.S10 TGA data of PPOP-1 and Mn-PPOP-1 under N_2 atmosphere.

Fig. S11 XPS survey spectra of PPOP-1.

Fig. S12 Pore size distribution of (a) PPOP-1, and (b) Mn-PPOP-1.

Fig. S13 Yield of catalytic cycles for the epoxidation of styrene by Mn-PPOP-1.

Fig. S14 SEM images of Mn-PPOP- 1 after 5rd cycle.

Fig. S15 TEM images of Mn-PPOP- 1 after 5rd cycle.

Fig. S16 N₂ adsorption/desorption isotherms of Mn-PPOP- 1 after 5rd cycle.

Fig. S17 EDS mapping of Mn-PPOP-1.

Table 51 Selective epoxication of oferins catalyzed by various catalysis				
Entry	Substrate	Product	Catalyst	Yield (%) ^b
1		↓ A°	Mn-TBPP	76
2		$\mathbf{n}_{\mathbf{n}}$	Mn-TBPP	29 ^c
3		A⁰	MnCl ₂	21
4		► ^A °	PPOP-1	Trace
5			Blank	Trace

Table S1 Selective epoxidation of olefins catalyzed by various catalysts^a

^{*a*}Catalyst (0.005 mmol), Olefins (0.1 mmol) and PhIO (0.15 mmol) in 1ml CH₃CN were stirred at room temperature for 12 h.; ^{*b*} Yield [%] was determined by GC-MS using an SE-54 column.; ^{*c*} The third cycle;