Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Reactivity of *N*-heterocyclic carbene–pyridine palladacyclopentadiene complexes toward halogens addition. The unpredictable course of the reaction

F. Visentin, T. Scattolin, C. Santo, N. Demitri and L. Canovese

- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Venice, Italy.
 E. Mail: cano@unive.it
- ^b Elettra Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza Trieste, Italy.

Contents

- 1) Fig. S1: ¹H NMR spectrum of complex 2b
- 2) Fig S2: ¹³C{¹H} NMR spectrum of the complex 2c
- 3) Fig S3 a: NOESY spectrum of complex 2b
- 4) Fig. S3 b: Calculated energy (DFT) and topological representation of *endo* and *exo* isomers of complexes 2
- 5) Fig. S3 c: ¹H NMR spectrum of complex 2a
- 6) Fig. S4: ¹H NMR spectrum of complex 3c
- 7) Fig S5: ¹³C{¹H} NMR spectrum of the complex 3c
- 8) Fig. S6: ¹H NMR spectra of complex 3d
- 9) Fig. S7: Comparison among relative stabilization energy of the complexes 3a, 4a* and 4a
- 10) Fig. S8: a) ¹H NMR spectrum of complex 4b in CD₂Cl₂ at 298K
 - b) 13C{¹H } NMR spectrum of complex 4b in CD₂Cl₂ at 298K
 - c) NOESY ¹H NMR spectrum of complex 4b in CD₂Cl₂ at 298K
 - d) HMBC spectrum of complex 4b in CD₂Cl₂ at 298K
- 11) Table S1: Crystallographic data and refinement details for compound 4b
- 12) a) Fig: S9 a) Ellipsoid representation of 4b

b) Superimposition of 4b conformations

- 12) Fig S10: ORTEP representation of complex 4b and 4b solv
- 13) Fig. S11 a-j: NMR spectra of the synthesized complexes not mentioned in the text.

Fig. S1: ¹H NMR spectrum of complex **2b** in CDCl₃ at 298 K.

Fig S2: ${}^{13}C{}^{1}H$ NMR spectrum of the complex **2c** in CDCl₃ at 298 K.

Fig S3 a: NOESY NMR spectrum of complex **2b** in CD_2Cl_2 at 298 K. The cross-peaks between the $COOC\underline{H}_3$ protons of the butadienyl fragment and the o-methyl protons of mesityl substituent are highlighted by circles and squares.

Fig. S3 b: Calculated energy (DFT) and topological representation of *endo* and *exo* isomers of complexes **2a**

Fig. S3 c: ¹H NMR spectrum of complex **2a** in CDCl₃ at 298 K

Fig. S4: ¹H NMR spectrum of complex **3c** in CDCl₃ at 298 K

Fig S5: ${}^{13}C{}^{1}H$ NMR spectrum of the complex **3c** in CDCl₃ at 298 K.

Fig. S6: ¹H NMR spectra of complex **3d** in CDCl₃ at 298 K (top) and 223 K (bottom)

Fig. S7: Comparison among relative stabilization energy of the complexes 3a, 4a* and 4a

Fig. S8: a) ¹H NMR spectrum of complex **4b** in CD_2Cl_2 at 298K

Fig. S8: b) $^{13}C\{^{1}H\}$ NMR spectrum of complex 4b in $CD_{2}Cl_{2}$ at 298K

Fig. S8: c)NOESY ¹H NMR spectrum of complex **4b** in CD_2Cl_2 at 298K

Fig S8: d) HMBC spectrum of complex **4b** in CD₂Cl₂ at 298K

Table S1: Crystallographic data and refinement details crystal forms of compound 4b.

	Orthorhombic 4b	Monoclinic 4b·¾CH ₂ Cl ₂
	$[PdC_{30}H_{31}I_2N_3O_8]$	$[PdC_{30}H_{31}I_2N_3O_8{\cdot}0.75CH_2Cl_2]$
CCDC Number	??????	???????

Chemical Formula	PdC ₃₀ H ₃₁ I ₂ N ₃ O ₈	PdC _{30.75} H _{32.5} Cl _{1.5} I ₂ N ₃ O ₈
Formula weight	921.78 g/mol	985.47 g/mol
Temperature	100(2) K	100(2) K
Wavelength	0.700 Å	0.700 Å
Crystal system	Orthorhombic	Monoclinic
Space Group	P bca	$P 2_1/c$
Unit cell dimensions	a = 19.777(4) Å	a = 10.929(2) Å
	b = 15.975(3) Å	b = 15.041(3) Å
	c = 20.563(4) Å	c = 21.431(4) Å
	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$
	$\beta = 90^{\circ}$	$\beta = 94.00(3)^{\circ}$
	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$
Volume	6497(2) Å ³	3514.3(12) Å ³
Z	8	4
Density (calculated)	1.885 g·cm ⁻³	1.863 g·cm ⁻³
Absorption coefficient	2.392 mm ⁻¹	2.322 mm ⁻¹
F(000)	3584	1918
Crystal size	0.08 x 0.02 x 0.02 mm ³	0.08 x 0.02 x 0.02 mm ³
Crystal habit	Dark yellow thin rods	Dark yellow thin rods
Theta range	1 000 4- 07 040	1 (20 +- 27 420
for data collection	1.89° to 27.04°	1.63° to 27.42°
Index ranges	$-25 \le h \le 25$,	$-14 \le h \le 14$,
	$-19 \le k \le 19$,	$-19 \le k \le 19$,
	$-26 \le l \le 26$	$-28 \le l \le 28$
Reflections collected	82101	52503
Independent reflections	7229, 6011 data with $I > 2\sigma(I)$	8252, 7003 data with $I>2\sigma(I)$
Data multiplicity	10.54 (10.42)	2.57 (2.40)
(max resltn)	10.54 (10.42)	2.57 (2.49)
$I/\sigma(I)$ (max resltn)	25.88 (15.89)	10.89 (6.67)
R _{merge} (max resltn)	0.047 (0.104)	0.053 (0.101)
Data completeness	070/ (050/)	000/ (000/)
(max resltn)	97% (95%)	99% (99%)
Refinement method	Full-matrix least-squares	Full-matrix least-squares
	on F ²	on F ²
Data / restraints /	7220/2//45/	9252/6/442
parameters	/229/30/436	8252/6/443
Goodness-of-fit on F ²	1.047	1.045
Δ/σ_{max}	0.001	0.003
Final R indices $[I>2\sigma(I)]$	$R_1 = 0.0426, wR_2 = 0.1080$	$R_1 = 0.0623, wR_2 = 0.1666$
R indices (all data)	$R_1 = 0.0525, wR_2 = 0.1157$	$R_1 = 0.0715$, $wR_2 = 0.1755$
Largest diff. peak and hole	2.487 and -1.424 eÅ ⁻³	2.352 and -1.955 eÅ ⁻³
R.M.S. deviation	0 157 a Å - 3	$0.217 \circ^{1} - 3$
from mean	0.13/ CA -	$0.21 / CA^{-3}$

 $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|, \ wR_2 = \{ \Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2] \}^{\frac{1}{2}}$

Fig. S9:a) Ellipsoid representation of **4b** crystals ASU contents (50% probability): A) orthorhombic crystal form; B) monoclinic crystal form; C) naming scheme adopted for both crystal structures.

b) Superimposition of **4b** conformations found in orthorhombic (light green sticks) and monoclinic (grey sticks) crystal forms. R.m.s. deviation between overlapped atoms equal to 0.65 Å.

* L. Farrugia, Journal of Applied Crystallography, 2012, 45(4), 849-854.

Fig. S11 a-j: NMR spectra of the complexes not mentioned in the text.

Fig S11 a: ${}^{13}C{}^{1}H$ NMR spectrum of the complex **2a** in CDCl₃ at 298 K (E = COOMe)

Fig S11 b: ¹H NMR spectrum of the complex 3a in CDCl₃ at 298 K (E = COOMe)

Fig S11 c: ${}^{13}C{}^{1}H$ NMR spectrum of the complex **3a** in CDCl₃ at 253 K (E = COOMe)

Fig S11 d: ${}^{13}C{}^{1}H$ NMR spectrum of the complex **2b** in CDCl₃ at 298 K (E = COOMe)

Fig S11 e: ¹H NMR spectrum of the complex **3b** in CD_2Cl_2 at 298 K (E = COOMe)

Fig S11 f: ${}^{13}C{}^{1}H$ NMR spectrum of the complex **3b** in CDCl₃ at 298 K (E = COOMe)

Fig S11 g: ¹H NMR spectrum of the complex 2c in CDCl₃ at 298 K (E = COOMe)

Fig S11 h: ${}^{13}C{}^{1}H$ NMR spectrum of the complex **3d** in CDCl₃ at 298 K (E = COOMe)

Fig S11 i: ¹H NMR spectrum of the complex 4a in CDCl₃ at 298 K

Fig S11 j: ${}^{13}C{}^{1}H$ NMR spectrum of the complex **4z** in CDCl₃ at 298 K