Electronic Supplementary Information for

Efficient removal of uranium(VI) from simulated seawater using amidoximated polyacrylonitrile/FeOOH composites

Xintao Wei^a, Qi Liu^{a,b,c*}, Hongsen Zhang^a, Zetong Lu^d, Jingyuan Liu^{a,c}, Rongrong

Chen ^{a,c}, Rumin Li^{a,b,c*}, Zhangshuang Li^{a,c}, Peili Liu^c and Jun Wang ^{a,c}

^a Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001, P. R. China.

- ^b Harbin Ship Engineering Research & Design Institute Co., Ltd, Harbin, China.
- ^c College of Material Science and Chemical Engineering, Harbin Engineering University, 150001, P. R. China.

^d Heilongjiang University of Science and Technology, 150027, P. R. China.

* Corresponding author: Tel.: +86 451 8253 3026; fax: +86 451 8253 3026.

E-mail address: qiliu@hrbeu.edu.cn

Fig. S1 Synthesis of amidoximated polyacrylonitrile/FeOOH composites.

Table S1: Main element contents on the FeOOH-APAN-U calculated from SEM-EDS (%).

Element	С	Ν	0	Fe	U	Totals
Weight	45.1	39.7	12.5	0.8	2.0	100

Table S2: Adsorption Isotherm Data of FeOOH-APAN towards U(VI)

T(K)	C ₀ (mg L ⁻¹)	C _e (mg L ⁻¹)	Qe(mg g ⁻¹)	Removal(%)	$K_d(mL g^{-1})$
	25.98	0.332	64.12	98.72	1.93×10 ⁵
	52.81	0.804	130.015	98.48	1.62×10 ⁵
	105.8	1.796	260.01	98.30	1.45×10 ⁵
	152.4	2.838	373.905	98.14	1.32×10 ⁵
	206	3.875	505.3125	98.12	1.30×10 ⁵
200	256.3	4.87	628.575	98.10	1.29×10 ⁵
298	308.8	7.623	752.9425	97.53	9.88×10 ⁴
	384.2	38.5	864.25	89.98	2.24×10 ⁴
	440	78.57	903.575	82.14	1.15×10 ⁴
	510.6	126.7	959.75	75.19	7.6×10 ³
	609.2	224.2	962.5	63.20	4.3×10 ³
	654.1	268.7	963.5	58.92	3.6×10 ³
	25.98	0.071	64.7725	99.73	9.12×10 ⁵
	52.81	0.678	130.33	98.72	1.92×10 ⁵
	105.8	1.467	260.8325	98.61	1.78×10 ⁵
	152.4	2.314	375.215	98.48	1.62×10 ⁵
	206	3.562	506.095	98.27	1.42×10 ⁵
209	256.3	4.615	629.2125	98.20	1.36×10 ⁵
308	308.8	5.983	757.0425	98.06	1.27×10 ⁵
	384.2	14.18	925.05	96.31	6.52×10 ⁴
	440	35.69	1010.775	91.89	2.83×10 ⁴
	510.6	75.49	1087.775	85.22	1.44×10^{4}
	609.2	173.9	1088.25	71.45	6.3×10 ³
	654.1	218.5	1089	66.60	5.0×10 ³
318	25.98	0.0556	64.811	99.79	1.17×10 ⁶

52.81	0.453	130.8925	99.14	2.89×10 ⁵
105.8	1.09	261.775	98.97	2.40×10 ⁵
152.4	1.767	376.5825	98.84	2.13×10 ⁵
206	2.449	508.8775	98.81	2.08×10 ⁵
256.3	3.641	631.6475	98.58	1.73×10 ⁵
308.8	4.775	760.0625	98.45	1.59×10 ⁵
384.2	9.336	937.16	97.57	1.00×10 ⁵
440	24.72	1038.2	94.38	4.20×10^{4}
510.6	55.66	1137.35	89.10	2.04×10^{4}
609.2	153.9	1138.25	74.74	7.4×10^{3}
 654.1	198.6	1138.75	69.64	5.7×10 ³

Table S3 Comparison of uranium adsorption capacity at different pH

Adsorbants	q _e	C ₀	m/V	nЦ	Dafe
Ausoroents	(mg g ⁻¹)	(mg L ⁻¹)	(g L ⁻¹)	pm	Keis
	123.8	440	0.4	3.0	This
	198.3	440	0.4	4.0	
	264.6	440	0.4	5.0	
Amidavimeted polyage contribution approach	460.7	440	0.4	6.0	
Annuoximated polyaciyoniu ne/record composite	834.1	440	0.4	7.0	work
	773.2	440	0.4	9.0	
	330.8	440	0.4	10.0	
	179.5	440	0.4	11.0	

Table S4 Comparison of different adsorbents

Adsorbents	q_e (mg g ⁻¹)	C ₀ (mg L ⁻¹)	m/V (g L ⁻¹)	pН	Adsorbates	Refs
Fe ₃ O ₄ @Polydopamine	4	5	5	/	Rhodamine B	24
CMNP@PmPD	95.2	139.5	0.1	2.3	As(V)	43
DANI/II TNID	339.46	251.8	0.3	5.0	НА	44
PANI/H-1NBs	156.94	137.1	0.3	5.0	Cr(VI)	44
Denous Fe O	6.77	14	0.5	5.0	As(III)	50
Porous Fe ₃ O ₄	7.23	5.1	0.5	5.0	As(V)	50
Fe ₃ O ₄ @PmPDs	246.09	263	0.5	2.0	Cr(VI)	51
FeOOH-APAN	963.4	440	0.4	8.0	U(VI)	This work

Fig. S2 Effect of hydrochloric acid concentration on desorption, 1-0.01mol/L hydrochloric acid, 2-0.05mol/L hydrochloric acid, 3-0.1mol/L hydrochloric acid, 4-0.2mol/L hydrochloric acid, 5-0.5mol/L hydrochloric acid.

Fig. S3 Effect of contact time on the adsorption of uranium onto FeOOH-APAN(C_0=3.593 ppb, T=298 K, m=50 mg, V=50 mL).