Electronic Supplementary Information (ESI)

Stepwise construction of discrete parallelogram- and prism-shaped organometallic architectures based on halfsandwich rhodium fragments
Wen-Xi Gao, Yue-Jian Lin and Guo-Xin Jin*
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China.
*Email: gxjin@fudan.edu.cn.

1. NMR spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, ppm) for $\mathrm{Li}_{2} \mathrm{HL}$.

Figure S2. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{ppm}$) for 1 .

Figure S3. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for $\mathbf{1}$.

Figure S4. ${ }^{1} \mathrm{H}$ DOSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for $\mathbf{1}$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{ppm}$) for 2 .

Figure S6. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for $\mathbf{2}$.

Figure S7. ${ }^{1} \mathrm{H}$ DOSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for $\mathbf{2}$.

Figure S8. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for 3 .

Figure S9. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for $\mathbf{3}$.

Figure S10. ${ }^{1} \mathrm{H}$ DOSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{ppm}$) for $\mathbf{3}$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for 4.

Figure S12. ${ }^{1} \mathrm{H}$ DOSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for 4.

Figure S13. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for 5.

Figure S14. ${ }^{1} \mathrm{H}$ DOSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, ppm) for 5 .

2. Synthesis of (2-(pyridin-2-yl)-1H-imidazole-4,5-dicarboxylate $\mathbf{H} \mathbf{L}^{\mathbf{2 -}}$

Scheme S1. Synthesis of (2-(pyridin-2-yl)-1H-imidazole-4,5-dicarboxylate H \boldsymbol{L}^{2-} The proligand $\mathrm{H}_{3} \mathrm{~L}$ was synthesized according to the literature with some modifications ${ }^{\text {s1 }}$. 2-(2-Pyridyl)benzimidazole ($1 \mathrm{~g}, 5.13 \mathrm{mmol}$) was added to $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}(8.4 \mathrm{~mL}$) in portions. An $\mathrm{H}_{2} \mathrm{O}_{2}$ solution $(30 \%, 8 \mathrm{~mL})$ was added dropwise to the above solution at 373 K . The resulting solution was then stirred for 1 h at 413 K . After cooling to 313 K , water (200 mL) was added. The precipitated product was filtered off, washed with water and dried, yielding a light-yellow powder. The corresponding dianion $\mathbf{H} \boldsymbol{L}^{2-}$ was prepared by the reaction of dicarboxylic acid with two equivalents of lithium hydroxide in methanol. $\mathrm{Li}_{2} \mathrm{H} \boldsymbol{L} .478 \mathrm{mg}$, yield: $38 \% .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta=8.53(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{L}-\mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{L}-\mathrm{H}), 7.84-7.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{L}-\mathrm{H})$, 7.32-7.46 (m, 1H, L-H). IR (KBr disk, $\left.\mathrm{cm}^{-1}\right) v=3405,1598,1533,1458,1421,1390,1358,1263$, 1152, 1114, 1001, 803, 744, 710, 557. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{Li}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}: \mathrm{C}, 49.01 ; \mathrm{H}, 2.06 ; \mathrm{N}, 17.15$. Found: C, 49.01; H, 2.16; N, 17.21.

3. Molecular structures of complex 3 and 5

Figure S15. X-ray crystal structure of cationic part of tetranuclear macrocycle 3. Hydrogen atoms, OTf ${ }^{-}$anions, solvent molecules and disorder are omitted for clarity (N , blue; O , red; C , gray; Rh , pink).

Figure S16. X-ray crystal structure of cationic parts of hexanuclear triangular prismatic complex $\mathbf{5 a} / \mathbf{5} \mathbf{b}$: a) side view of $\mathbf{5 a}$; b) side view of $\mathbf{5 b}$; c) top view of $\mathbf{5 a} ;$ d) top view of $\mathbf{5 b}$. Hydrogen atoms, OTf^{-}anions, solvent molecules and disorder are omitted for clarity (N , blue; O , red; C , gray; Rh , pink)
4. One-dimensional chain structure composed of binuclear complex 1

Figure S17. One-dimensional chain structure composed of dinuclear complex 1 viewed along the b axis. Part of hydrogen atoms and OTf ${ }^{-}$anions, solvent molecules and disorder are omitted for clarity except those involved in hydrogen bonding (N, blue; O, red; C, gray; S, yellow; F, bright green; Rh, pink).

5. X-ray Crystallography Details.

Single crystals of 1, 2, 3, 4 and 5 suitable for X-ray diffraction study were obtained at room temperature. X-ray intensity data of $\mathbf{1}$ and $\mathbf{2 / 3} / \mathbf{4}$ were collected on a CCD-Bruker SMART APEX system at 223 K and 173 K respectively, data of $\mathbf{5}$ was collected on a Bruker D8 VENTURE system at 173 K . In these data, the disordered solvent molecules which could not be restrained properly were removed using the SQUEEZE route.

In asymmetric unit of $\mathbf{1}$, there was one disordered triflate anion which could not be restrained properly. Therefore, SQUEEZE algorithm was used to omit it. One pentamethylcyclopentadienyl ligand (Cp* for short) was disordered and it was divided into two parts (61:39). 19 ISOR and 6 DFIX instructions were used to restrain $\mathrm{Cp} *$ fragments so that there were 120 restraints in the data.

In asymmetric unit of 2, there were disordered solvents (four methanol and one water molecules) which could not be restrained properly. Therefore, SQUEEZE algorithm was used to omit them. One of four triflate anions was disordered and it was divided into two parts (57:43). 22 ISOR and 35 DFIX instructions were used to restrain anions, solvents and Cp* fragments so that there were 167 restraints in the data. Hydrogen of methanol molecules could not be found and others were put in calculated positions.

In asymmetric unit of $\mathbf{3}$, there were disordered solvents (one di-isopropyl ether, two methanol and two water molecules) which could not be restrained properly. Therefore, SQUEEZE algorithm was used to omit them. One triflate anion was disordered and it was divided into two parts (51:49). 50 ISOR, 1 SIMU and 8 DFIX instructions were used to restrain anions and Cp* fragments so that there were 344 restraints in the data.

In asymmetric unit of 4, there were disordered anions and solvents (three triflate anions, two methanol and one water molecules) which could not be restrained properly. Therefore, SQUEEZE algorithm was used to omit them. The imidazoledicarboxylate ligand was disordered and it was divided into two parts (54:46). 40 ISOR, 4 SIMU and 29 DFIX instructions were used to restrain ligand and Cp * fragments so that there were 359 restraints in the data. Hydrogen of water molecules could not be found and others were put in calculated positions.

In asymmetric unit of $\mathbf{5}$, there were disordered anions and solvents (two and a half triflate anions, one methanol and four water molecules) which could not be restrained properly. Therefore, SQUEEZE algorithm was used to omit them. The imidazoledicarboxylate ligand was disordered and it was divided into two parts (53:47). 47 ISOR, 4 SIMU and 31 DFIX instructions were used to restrain anions, ligands and Cp^{*} fragments so that there were 511 restraints in the data.

Table S1. Crystal data and structure refinement for 1.

Empirical formula	$\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{Rh}_{2} \mathrm{~S}_{2}$
Formula weight	1087.68
Temperature	223(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=15.658(4) \AA \quad \alpha=90^{\circ}$.
	$b=11.827(3) \AA \quad \beta=105.898(4)^{\circ}$.
	$\mathrm{c}=24.371(5) \AA \quad \gamma=90^{\circ}$.
Volume	4340.7(17) \AA^{3}
Z	4
Density (calculated)	$1.664 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.941 \mathrm{~mm}^{-1}$
F(000)	2192
Crystal size	$0.250 \times 0.220 \times 0.180 \mathrm{~mm}^{3}$
Theta range for data collection	1.352 to 26.723°.
Index ranges	$-19<=\mathrm{h}<=19,-14<=\mathrm{k}<=14,-21<=1<=30$
Reflections collected	29099
Independent reflections	$9110[R(\mathrm{int})=0.0984]$
Completeness to theta $=25.242^{\circ}$	99.6 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.724 and 0.613
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	9110 / 120 / 544
Goodness-of-fit on F^{2}	0.946
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]^{[a]}$	$R_{l}=0.0721, w R_{2}=0.1787$
R indices (all data)	$R_{1}=0.1397, w R_{2}=0.2048$
Extinction coefficient	n / a
Largest diff. peak and hole	0.810 and -0.750 e. \AA^{-3}

$[\mathrm{a}] R_{l}=\Sigma| | F_{0}|-| F_{c} \|$ (based on reflections with $\left.\mathrm{F}_{0}{ }^{2}>2 \sigma \mathrm{~F}^{2}\right) . w R_{2}=\left[\Sigma\left[w\left(F_{0}{ }^{2}-F_{c}{ }^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{0}{ }^{2}\right)^{2}\right]\right]^{1 / 2} ; w=1 /\left[\sigma^{2}\right.$ $\left.\left(F_{0}{ }^{2}\right)+(0.095 P)^{2}\right] ; P=\left[\max \left(F_{0}{ }^{2}, 0\right)+2 F_{c}{ }^{2}\right] / 3$ (also with $F_{0}{ }^{2}>2 \sigma F^{2}$)

Table S2. Crystal data and structure refinement for 2.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.010^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)] ${ }^{[a]}$
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$\mathrm{C}_{90} \mathrm{H}_{112} \mathrm{~F}_{12} \mathrm{~N}_{10} \mathrm{O}_{27} \mathrm{Rh}_{4} \mathrm{~S}_{4}$
2533.77

173(2) K
$0.71073 \AA$
Triclinic
P-1
$\mathrm{a}=15.3538(17) \AA \quad \alpha=109.857(2)^{\circ}$.
$\mathrm{b}=17.894(2) \AA \quad \beta=91.607(2)^{\circ}$.
$\mathrm{c}=20.376(2) \AA \quad \gamma=96.139(2)^{\circ}$.
$5222.8(10) \AA^{3}$
2
$1.611 \mathrm{Mg} / \mathrm{m}^{3}$
$0.800 \mathrm{~mm}^{-1}$
2580
$0.110 \times 0.100 \times 0.090 \mathrm{~mm}^{3}$
1.219 to 25.010°.
$-17<=\mathrm{h}<=18,-20<=\mathrm{k}<=21,-20<=1<=24$
32624
$18395[R($ int $)=0.1673]$
99.7 \%

Semi-empirical from equivalents
0.745 and 0.679

Full-matrix least-squares on F^{2}
18395/167/1318
0.837
$R_{I}=0.0642, w R_{2}=0.1405$
$R_{1}=0.1416, w R_{2}=0.1714$
n / a
1.342 and $-1.453 \mathrm{e} . \AA^{-3}$
[a] $R_{l}=\Sigma| | F_{0}|-| F_{c} \|$ (based on reflections with $\left.\mathrm{F}_{0}{ }^{2}>2 \sigma \mathrm{~F}^{2}\right) . w R_{2}=\left[\Sigma\left[w\left(F_{0}^{2}-F_{c}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{0}^{2}\right)^{2}\right]\right]^{1 / 2} ; w=1 /\left[\sigma^{2}\right.$ $\left.\left(F_{0}{ }^{2}\right)+(0.095 P)^{2}\right] ; P=\left[\max \left(F_{0}^{2}, 0\right)+2 F_{c}^{2}\right] / 3$ (also with $F_{0}{ }^{2}>2 \sigma F^{2}$)

Table S3. Crystal data and structure refinement for 3.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.008^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$\mathrm{C}_{104} \mathrm{H}_{138} \mathrm{~F}_{12} \mathrm{~N}_{10} \mathrm{O}_{30} \mathrm{Rh}_{4} \mathrm{~S}_{4}$
2776.12

173(2) K
$0.71073 \AA$
Triclinic
P-1
$a=11.772(3) \AA \quad \alpha=73.978(4)^{\circ}$.
$\mathrm{b}=13.853(3) \AA \quad \beta=78.962(4)^{\circ}$.
$\mathrm{c}=18.827(4) \AA \quad \gamma=77.523(4)^{\circ}$.
$2852.8(11) \AA^{3}$
1
$1.616 \mathrm{Mg} / \mathrm{m}^{3}$
$0.742 \mathrm{~mm}^{-1}$
1424
$0.520 \times 0.410 \times 0.280 \mathrm{~mm}^{3}$
1.137 to 25.008°.
$-13<=\mathrm{h}<=13,-16<=\mathrm{k}<=11,-22<=1<=11$
7980
$7710[R(\mathrm{int})=0.0399]$
76.7 \%

Semi-empirical from equivalents
0.647 and 0.540

Full-matrix least-squares on F^{2}
7710 / 344 / 668
1.653
$R_{I}=0.1168, w R_{2}=0.3167$
$R_{I}=0.1546, w R_{2}=0.3967$
n/a
3.532 and -3.098 e. \AA^{-3}
[a] $R_{l}=\Sigma| | F_{0}|-| F_{c} \|$ (based on reflections with $\left.\mathrm{F}_{0}{ }^{2}>2 \sigma \mathrm{~F}^{2}\right) . w R_{2}=\left[\Sigma\left[w\left(F_{0}^{2}-F_{c}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{0}^{2}\right)^{2}\right]\right]^{1 / 2} ; w=1 /\left[\sigma^{2}\right.$ $\left.\left(F_{0}{ }^{2}\right)+(0.095 P)^{2}\right] ; P=\left[\max \left(F_{0}^{2}, 0\right)+2 F_{c}^{2}\right] / 3$ (also with $F_{0}{ }^{2}>2 \sigma F^{2}$)

Table S4. Crystal data and structure refinement for 4.

Empirical formula	$\mathrm{C}_{120} \mathrm{H}_{146} \mathrm{~F}_{18} \mathrm{~N}_{12} \mathrm{O}_{33} \mathrm{Rh}_{6} \mathrm{~S}_{6}$
Formula weight	3436.30
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	$\mathrm{a}=21.867(5) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=26.493(6) \AA \quad \beta=106.754(4)^{\circ}$.
	$\mathrm{c}=27.213(6) \AA \quad \gamma=90^{\circ}$.
Volume	15096(6) \AA^{3}
Z	4
Density (calculated)	$1.512 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.817 \mathrm{~mm}^{-1}$
F(000)	6968
Crystal size	$0.420 \times 0.210 \times 0.180 \mathrm{~mm}^{3}$
Theta range for data collection	1.240 to 26.000°.
Index ranges	$-25<=\mathrm{h}<=26,-32<=\mathrm{k}<=32,-27<=\mathrm{l}<=33$
Reflections collected	49051
Independent reflections	$14808[\mathrm{R}($ int $)=0.0929]$
Completeness to theta $=25.242^{\circ}$	99.7 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.746 and 0.617
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	14808 / 359 / 787
Goodness-of-fit on F2	1.002
Final R indices [I>2sigma(I) ${ }^{[a]}$	$R_{l}=0.0747, w R_{2}=0.2135$
R indices (all data)	$R_{l}=0.1322, w R_{2}=0.2334$
Extinction coefficient	n/a
Largest diff. peak and hole	0.981 and -0.578 e.\AA^{-3}

[a] $R_{l}=\Sigma| | F_{0}|-| F_{c} \|$ (based on reflections with $\left.\mathrm{F}_{0}{ }^{2}>2 \sigma \mathrm{~F}^{2}\right) . w R_{2}=\left[\Sigma\left[w\left(F_{0}{ }^{2}-F_{c}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{0}^{2}\right)^{2}\right]\right]^{1 / 2} ; w=1 /\left[\sigma^{2}\right.$ $\left.\left(F_{0}{ }^{2}\right)+(0.095 P)^{2}\right] ; P=\left[\max \left(F_{0}{ }^{2}, 0\right)+2 F_{c}{ }^{2}\right] / 3$ (also with $F_{0}{ }^{2}>2 \sigma F^{2}$)

Table S5. Crystal data and structure refinement for 5.

Empirical formula	$\mathrm{C}_{124} \mathrm{H}_{146} \mathrm{~F}_{18} \mathrm{~N}_{12} \mathrm{O}_{36} \mathrm{Rh}_{6} \mathrm{~S}_{6}$
Formula weight	3532.34
Temperature	173(2) K
Wavelength	1.54178 £
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	$a=22.900(2) \AA \quad \alpha=90^{\circ}$.
	$b=25.994(2) \AA \quad \beta=111.608(9)^{\circ}$.
	$\mathrm{c}=29.597(3) \AA \quad \gamma=90^{\circ}$.
Volume	16380(3) \AA^{3}
Z	4
Density (calculated)	$1.432 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$6.272 \mathrm{~mm}^{-1}$
F(000)	7160
Crystal size	$0.250 \times 0.220 \times 0.180 \mathrm{~mm}^{3}$
Theta range for data collection	2.683 to 70.989°.
Index ranges	$-27<=\mathrm{h}<=24,-31<=\mathrm{k}<=23,-36<=1<=35$
Reflections collected	30837
Independent reflections	$15177[R(\mathrm{int})=0.0652]$
Completeness to theta $=67.679^{\circ}$	97.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.754 and 0.556
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	15177 / 511 / 869
Goodness-of-fit on F2	1.035
Final R indices [I>2sigma(I) ${ }^{[\text {a] }}$	$R_{l}=0.1018, w R_{2}=0.2954$
R indices (all data)	$R_{l}=0.1422, w R_{2}=0.3249$
Extinction coefficient	n / a
Largest diff. peak and hole	2.352 and $-0.731 \mathrm{e} . \AA^{-3}$

[a] $R_{l}=\Sigma| | F_{0}|-| F_{c} \|$ (based on reflections with $\left.\mathrm{F}_{0}{ }^{2}>2 \sigma \mathrm{~F}^{2}\right) . w R_{2}=\left[\Sigma\left[w\left(F_{0}{ }^{2}-F_{c}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{0}^{2}\right)^{2}\right]\right]^{1 / 2} ; w=1 /\left[\sigma^{2}\right.$ $\left.\left(F_{0}{ }^{2}\right)+(0.095 P)^{2}\right] ; P=\left[\max \left(F_{0}^{2}, 0\right)+2 F_{c}^{2}\right] / 3$ (also with $F_{0}{ }^{2}>2 \sigma F^{2}$)

Reference:

S1. T. Sun, J. -P. Ma, R. -Q. Huang and Y. -B. Dong, Acta Cryst., E62, o2751-o2752.

