New Au(I)-Cu(I) heterometallic complexes: role of bridging pyridazine ligands in the presence of unsupported metallophilic interactions

Rocío Donamaría,ª Eduardo J. Fernández,ª José M. López-de-Luzuriaga,*ª Miguel Monge,ª M. Elena Olmosª, David Pascual, ª María Rodríguez-Castillo ª

^a Departamento de Química, Universidad de La Rioja, Centro de Investigación de Síntesis
Química (CSIQ). Complejo Científico-Tecnológico, 26004-Logroño, SPAIN. Fax:
+34 941 299 621. Tel: +34 941 299 649; E-mail: josemaria.lopez@unirioja.es

ELECTRONIC SUPPLEMENTARY INFORMATION

Table of contents

I.	Characterization of the complexes 1 , 3-6	
	1. IR spectra in Nujol mulls	S2
	2. Liquid ¹ H and ¹⁹ F{ ¹ H} NMR spectra (300 MHz, 298K)	S6

II. Optical properties

1.	UV-Vis absorption spectra in solution and solid state	.S9
2.	Life time measurement	511

I. Characterization of the complexes **1**, **3-6**

1. IR spectra

Infrared spectra were recorded in the 4000-200cm⁻¹ range on a Perkin-Elmer FT-IR Spectrum 1000 spectrophotometer using Nujol mulls between polyethylene sheets.

Figure 1. FT-IR spectrum of complex 1 in Nujol mulls

Figure 2. FT-IR spectrum of complex 3 in Nujol mulls

Figure 3. FT-IR spectrum of complex 4 in Nujol mulls

Figure 4. FT-IR spectra of complexes **3** (black) and **4** (red) in Nujol mulls corresponding to the range of $v(C \equiv N)$ of nitrile ligand (left) and v(C=N) of pyridazine ligand (right).

Figure 5. FT-IR spectrum of complex 5 in Nujol mulls

Figure 6. FT-IR spectrum of complex 6 in Nujol mulls

Figure 7. FT-IR spectra of complexes **5** (black) and **6** (red) in Nujol mulls corresponding to the range of $v(C \equiv N)$ of nitrile ligand (left) and v(C=N) of pyridazine ligand (right).

2. Liquid ¹H and ¹⁹F{¹H} NMR spectra (300 MHz, 25^oC)

Figure 8. ¹H NMR spectrum of complex **3** in CD₃CN.

Figure 9. ¹H NMR spectrum of complex **4** in CD₃CN.

Figure 11. $^{19}\text{F}\{^{1}\text{H}\}$ NMR spectrum of complex 5 in CD_3CN.

Figure 12. ¹H NMR spectrum of complex **6** in CD₃CN.

Figure 13. ${}^{19}F{}^{1}H$ NMR spectrum of complex **6** in CD₃CN.

II. Optical properties

1. UV-Vis absorption spectra:

Absorption spectra in solution were recorded on a Hewlett-Packard 8453 diode array UV-Vis spectrophotometer. Diffuse reflectance UV-Vis spectra of pressed powder samples diluted with KBr were recorded on a Shimadzu (UV-3600 spectrophotometer with a Harrick Praying Mantis accessory) and recalculated following the Kubelka-Munk function.

Figure 14. UV-Vis spectra for complexes **3** (9.08×10^{-6} M), **4** (8.70×10^{-6} M), NBu₄[Au(C₆Cl₅)₂] (5.17×10^{-5} M) and pyridazine (2×10^{-4} M) in acetonitrile.

Figure 15. UV-Vis spectra for complexes **5** (2.64×10^{-5} M), **6** (2.65×10^{-5} M), NBu₄[Au(C₆F₅)₂] (5.17×10^{-5} M) and pyridazine (2×10^{-4} M) in acetonitrile.

Figure 16. UV-Vis absorption spectra in solid state for complexes **3** (black), **4** (red) and $NBu_4[Au(C_6Cl_5)_2]$ diluted with KBr.

Figure 17. UV-Vis absorption spectra in solid state for complexes **5** (black), **6** (red) and $NBu_4[Au(C_6F_5)_2]$ (blue) diluted with KBr.

2. Life time measurement:

Complex 1:

Emission centred at 490nm, excitation led of 370nm:

Figure 18. Lifetime decay.

Fitted parameters obtained:

SHIFT = 0 ch

T1 = 99.64665 ch

4.374064E-08 sec

S.Dev = 1.173863E-09 sec

T2 = 937.8336 ch

4.11669E-07 sec

S.Dev = 4.918362E-09 sec

A = 161.1211

S.Dev = 0.3305739

B1 = 553.5693

[15.14 Rel.Ampl]

S.Dev = 4.763408

B2 = 329.7734

[84.86 Rel.Ampl]

S.Dev = 1.438369

CHISQ = 1.14678