Electronic Supplementary Information (ESI)

2D-to-disguised 3D materials with built-in acid sites: H⁺-[AI]-RUB-18

Francisca S. O. Ramos¹, Heloise O. Pastore^{1*}

Micro and Mesoporous Molecular Sieves Group, Institute of Chemistry, University of Campinas, 270, Monteiro Lobato St., University Campus, Campinas, 13083-862, SP, Brazil.

* Corresponding Author: gpmmm@iqm.unicamp.br

Figure S1. Thermogravimetry (A) and its derivative (B) of the (a) Na-R18, (b) Na-[Al15 22]-R18, (c) Na-[Al30 42]-R18, and (d) Na-[Al60 40]-R18.

Figure S2. Thermogravimetry (A) and its derivative (B) of (a) CTA-R18, (b) CTA-[Al15_22]-R18, (c) CTA-[Al30_42]-R18, and (d) CTA-[Al60_40]-R18.

Figure S3. Powder XRD patterns of (a) CTA-RUB-18, (b) CTA-[Al15_22]-R18, (c) CTA-[Al30_42]-R18 and (d) CTA-[Al60_40]-R18.

Figure S4. Powder XRD patterns of the as synthesized pillared materials (a) R18-pil, (b) [Al22_41]-R18-pil, (c) [Al42_66]-R18-pil and (d) [Al40_131]-R18-pil.

Figure S5. ²⁷Al NMR spectra of (a) CTA-[Al15_22]-R18, (b) CTA-[Al30_42]-R18 and (c) CTA-[Al60_40]-R18.

Figure S6. ²⁷Al NMR spectra of (a) [Al22_41]-R18-pil, (b) [Al42_66]-R18-pil and (c) [Al40_131]-R18-pil.

Figure S7. ²⁹Si NMR spectra of (a) CTA-R18, (b) CTA-[Al15_22]-R18, (c) CTA-[Al30_42]-R18, and(d) CTA-[Al60_40]-R18.

Figure S8. ²⁹Si NMR spectra of (a) [Al22_41]-R18-pil, (b) [Al42_66]-R18-pil and (c) [Al40_131]-R18-pil.

Table S1. Empirical Formula of the Na-[Al]-RUB-18 aluminosilicates prepared throughICP OES and TGA data.

Table S2. Chemical Analysis of the samples exchanged with CTA⁺ ions, CTA⁺/unit cell and ion exchange degree for each sample.

Unit Cell Determination

Figure S1. Thermogravimetry (A) and its derivative (B) of the (a) Na-R18, (b) Na-[Al15_22]-R18, (c) Na-[Al30_42]-R18, and (d) Na-[Al60_40]-R18.

Figure S2. Thermogravimetry (A) and its derivative (B) of (a) CTA-R18, (b) CTA-[Al15_22]-R18, (c) CTA-[Al30_42]-R18, and (d) CTA-[Al60_40]-R18.

Figure S3. Powder XRD patterns of (a) CTA-RUB-18, (b) CTA-[Al15_22]-R18, (c) CTA-[Al30_42]-R18 and (d) CTA-[Al60_40]-R18.

Figure S4 Powder XRD patterns of the as synthesized pillared materials (a) R18-pil, (b) [Al15_22]-R18-pil, (c) [Al30_42]-R18-pil and (d) [Al60_40]-R18-pil.

Figure S5. ²⁷Al NMR spectra of (a) CTA-[Al15_22]-R18, (b) CTA-[Al30_42]-R18 and (c) CTA-[Al60_40]-R18.

Figure S6. ²⁷Al NMR spectra of (a) [Al15_22]-R18-pil, (b) [Al30_42]-R18-pil and (c) [Al60_40]-R18-pil.

Figure S7. ²⁹Si NMR spectra of (a) CTA-R18, (b) CTA-[Al15_22]-R18, (c) CTA-[Al30_42]-R18, and(d) CTA-[Al60_40]-R18.

Figure S8. ²⁹Si NMR spectra of (a) [Al15_22]-R18-pil, (b) [Al30_42]-R18-pil and (c) [Al60_40]-R18-pil.

Table S1. Empirical Formula of the Na-[Al]-RUB-18 aluminosilicates prepared throughICP OES and TGA data.

Sample	Empirical Formula		
Na-[Al15_22]-R18	Na _{7,4} [Si _{30,63} Al _{1,37} O ₆₄ (OH) ₈]·25H ₂ O		
Na-[Al30_42]-R-18	Na _{8,1} [Si _{31,25} Al _{0,75} O ₆₄ (OH) ₈]·24H ₂ O		
Na-[Al60_40]-R-18	Na _{9,8} [Si _{31,22} Al _{0,78} O ₆₄ (OH) ₈]·26H ₂ O		

Table S2. Chemical Analysis of the samples exchanged with CTA⁺ ions, CTA⁺/unit cell and ion exchange degree for each sample.

CTA-sample	C /	N /	H	CTA /	Ion Exchange
	%	% *	/%*	mol	degree / %ª
CTA-R18	35.20	1.63	6.79	3.5	45
CTA-[Al15_22]-R18	31.02	1.43	6.71	3.2	42
CTA-[Al30_42]-R18	28.87	1.19	6.27	3.1	38
CTA-[Al60_40]-R18	21.15	1.04	6.07	3.0	31

*%= m/m; a100% = all Na⁺ ions were replaced by CTA⁺ ions

Unit cells calculated from CHN (Table S1) and TGA (Fig S1):

• CTA-RUB-18:

 $Na_{4,4}CTA_{3,6}[Si_{32}O_{64}(OH)_8] \cdot 14,91H_2O$

• CTA-[Al15_22]RUB-18:

 $Na_{4,3}CTA_{3,2}[Si_{30,63}Al_{1,37}O_{64}(OH)_8]\cdot 14,67H_2O$

• CTA-[Al30_42]RUB-18:

 $Na_{3,1}CTA_5[Si_{31,25}AI_{0,75}O_{64}(OH)_8] \cdot 12,32H_2O$

• CTA-[Al60_40]RUB-18:

 $Na_{6,8}CTA_3[Si_{31,22}AI_{0,78}O_{64}(OH)_8]\cdot 14,12H_2O$