Optical Properties and Mechanofluorochromism of New BODIPY

Dyes Based on Pyridine-Pyrimidine-Hybrid Structure

Yi Liu,^{a,†} Jicheng Duan,^{c,†} Fen Qi,^{a,c} Dan Tian,^a Xiaoqing Wang,^b Zhipeng Liu,*,^a and Wei Huang^{a,d}

^a Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China. E-mail: <u>iamzpliu@njtech.edu.cn</u>. ^b Institute of Advanced Synthesis (IAS), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China.

^c Institute of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, No.1 Hunan Road, Liaocheng, 252000, P.R. China.

^d Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China † Both authors contribute equally to this work.

Compound	PPB1	PPB2	PPB3	
Empirical formula	$C_{11}H_6BCIF_2N_4$	$C_{13}H_{12}BF_2N_5$	$C_{12}H_9BF_2N_4$	
Formula weight	278.46	287.09	274.04	
Crystal system	Monoclinic	Monoclinic	Triclinic	
space group	P2(1)/n	P2(1)/c	P-1	
Unit cell dimensions	a = 10.4083(9) Å	a = 7.2050(6) Å	a = 7.2996(6) Å	
	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	α = 84.089(2)°	
	b = 5.5521(17) Å	b = 18.0229(15) Å	b = 9.5435(7) Å	
	β = 93.8410 (10)°	$\beta = 118.152(3)^{\circ}$	<i>β</i> = 80.1410 (10)°	
	c = 19.6438(17) Å	c = 11.3751(9) Å	c = 17.2754(15) Å	
	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	γ = 84.539(2)°	
Volume	1113(2) Å ³	1302.37(18) Å ³	1175.69(16) Å ³	
Z	4	4	4	
Cal. density	1.633 mg/m ⁻³	1.464 mg/m⁻³	1.548 mg/m⁻³	
F (000)	560	592	560	
Crystal size	0.22 x 0.20 x 0.18 mm ³	0.22 x 0.20 x 0.18 mm ³	0.22 x 0.20 x 0.18 mm ³	
GOF	1.006	0.672	0.929	
R indices	$R_1 = 0.0597,$	R ₁ = 0.0871,	R ₁ = 0.1031,	
	wR ₂ = 0.0970	$wR_2 = 0.2006$	wR ₂ = 0.1275	
CCDC No.	1554080	1554081	1554082	

Dye	State ^[a]	Energy (eV)	λ (nm)	F [b]	Orbitals (coefficient) ^[c]
PPB1	S₁	3.64	340	0.448	H-L (0.694)
	S_2	4.08	303	0.045	H-L+1 (0.692)
	S_3	4.71	263	0.250	H-L+2 (0.689)
PPB ₂	S ₁	3.63	340	0.437	H-L (0.693)
	S ₂	4.23	292	0.250	H-L+1 (0.690)
	S ₃	4.64	266	0.137	H-L+2 (0.694)
PPB3	S ₁	3.66	338	0.428	H-L (0.694)
	S ₂	4.11	301	0.084	H-L+1 (0.696)
	S ₃	4.62	268	0.258	H-L+2 (0.693)
PPB4	S ₁	3.58	346	0.588	H-L (0.693)
	S ₂	4.01	308	0.054	H-L+1 (0.690)
	S ₃	4.56	271	0.099	H-1-L (0.510), H-1-L+1 (0.415), H-1-
					L+2 (-0.102), H-1-L+3 (0.109)

Table S2 Calculated electronic excitation energies, oscillator strengths, andrelated wave functions

[a] Excited state. [b] Oscillator strength. [c] MOs involved in the transitions.

Fig. S1. Moldecular orbital energy plots of HOMOs and LUMOs of **PPB1–4** calculated by using CAM-B3LYP/6-31G(d) basis set with Go3 program.

Figure S2. Absorption spectra of PPB1 (a), PPB2 (b), PPB3 (c) and PPB4 (d) in different solvents (30 μ M).

Figure S3. Emission spectra of PPB1 (a), PPB2 (b), PPB3 (c) and PPB4 (d) in different solvents (10 μ M).

Fig. S4. Solid-state emission spectra of PPB2 (a) and PPB3 (b) under different conditions.

Figure S6. ¹³C NMR of PPB1 in CDCl₃.

Figure S8.¹³C NMR of PPB2 in CDCl₃.

Figure S10. ¹³C NMR of PPB3 in CDCl₃.

Figure S11.¹H NMR of PPB4 in DMSO.