Electronic Supplementary Information

Formation of Unexpected Silicon- and Disiloxane-Bridged Multiferrocenyl Derivatives Bearing Si-O-CH=CH2 and Si(CH2)2C(CH3)3 Substituents via Cleavage of Tetrahydrofuran and Trapping of its Ring Fragments

Sonia Bruña,^{a,b} Ana M^a González-Vadillo,^a Marta Ferrández,^a Josefina Perles,^c M. Merced Montero-Campillo,^d Otilia Mó,^{b,d} and Isabel Cuadrado^{*a,b}

^a Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain

^b Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid

^c Laboratorio de Difracción de Rayos X de Monocristal, Servicio Interdepartamental de Investigación (SIdI), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain

^d Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain

4.	Theoretical Studies of Compounds 5-7	25
3.	Single Crystal X-Ray Structures of compounds 5-9 (CCDC 1556608-1556612)	16
	Figure S25: CV and SWV responses of 7	12
	Figure S24: CV and SWV responses of 6	11
	Figure S23: CV and SWV responses of 5	11
2.	Electrochemical Measurements of Compounds 5-7	11
	Figures S21 and S22: IR and MALDI-TOF spectra of 8	10
	Figures S18, S19 and S20: ¹ H NMR, ¹³ C NMR and ²⁹ Si NMR spectra of 8	9
	Figures S16 and S17: IR and MALDI-TOF spectra of 7	8
	Figures S13, S14 and S15: ¹ H NMR, ¹³ C NMR and ²⁹ Si NMR spectra of 7	7
	Figures S10, S11 and S12: ²⁹ Si NMR, IR and MALDI-TOF spectra of 6	6
	Figures S7, S8 and S9: ¹ H NMR, ¹³ C NMR and $\{^{1}H-^{13}C\}$ HMQC spectra of 6	5
	Figures S5 and S6: IR and MALDI-TOF spectra of 5	4
	Figures S2, S3 and S4: ¹ H NMR, ¹³ C NMR and ²⁹ Si NMR spectra of 5	3
1.	Structural Characterization of Compounds 5-8	3
	Scheme S1: Possible synthetic pathway for the formation of 7 and 4	2
	Figure S1: ¹ H NMR spectrum of the reaction mixture to obtain 1 (route B)	2

Figure S1. ¹H NMR spectrum of the reaction mixture to obtain 1 following route B.

Scheme S1. Possible synthetic pathway for the formation of bimetallic silanol 7 and tetrametallic 4.

1. Structural Characterization of Compounds 5-8

Figure S2. ¹H NMR spectrum (in CDCl₃, 300 MHz) of diferrocenyl(3,3-dimethylbutyl)vinylsilane 5.

Figure S3. ¹³C NMR spectrum (in CDCl₃, 75 MHz) of diferrocenyl(3,3-dimethylbutyl)vinylsilane 5.

Figure S4. ²⁹Si NMR spectrum (in CDCl₃, 59 MHz) of diferrocenyl(3,3-dimethylbutyl)vinylsilane 5.

Figure S5. IR spectrum (in KBr) of diferrocenyl(3,3-dimethylbutyl)vinylsilane 5.

Figure S6. Mass spectrometry characterization by MALDI-TOF and experimental (top) and calculated (bottom) isotopic patterns of the $[M^+]$ peak for 5.

Figure S7. ¹H NMR spectrum (in CDCl₃, 300 MHz) of diferrocenylvinyloxyvinylsilane 6.

Ċ

Figure S9. {¹H-¹³C} HMQC of diferrocenyl 6 (CDCl₃, 59 MHz).

Figure S11. IR spectrum (in KBr) of diferrocenylvinyloxyvinylsilane 6.

Figure S12. Mass spectrometry characterization by MALDI-TOF and experimental (top) and calculated (bottom) isotopic patterns of the $[M^+]$ peak for 6.

Figure S16. IR spectrum (in KBr) of diferrocenylvinylsilanol 7.

Figure S17. Mass spectrometry characterization by MALDI-TOF and experimental (top) and calculated (bottom) isotopic patterns of the $[M^+]$ peak for 7.

Figure S18. ¹H NMR spectrum (in CDCl₃, 300 MHz) of tetraferrocenyl disiloxane 8.

150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 6 Figure S19. ¹³C NMR spectrum (in CDCl₃, 75 MHz) of tetraferrocenyl disiloxane 8.

Figure S21. IR spectrum (in KBr) of tetraferrocenyl disiloxane 8.

Figure S22. Mass spectrometry characterization by MALDI-TOF and experimental (top) and calculated (bottom) isotopic patterns of the $[M^+]$ peak for 8.

2. Electrochemical Measurements of Compounds 5-7

Figure S23. CV and SWV responses of compound **5** (10⁻³ M in CH₂Cl₂), (A) and (B) containing 0.1 M [*n*-Bu₄N][PF₆]; (C) and (D) containing 0.1 [*n*-Bu₄N][B(C₆F₅)₄]. Platinum working electrode.

Figure S24. CV and SWV responses of compound **6** (10⁻³ M in CH₂Cl₂), (A) and (B) containing 0.1 M [*n*-Bu₄N][PF₆]; (C) and (D) containing 0.1 [*n*-Bu₄N][B(C₆F₅)₄]. Platinum working electrode.

Figure S25. CV and SWV responses of compound 7 (10^{-3} M in CH₂Cl₂), containing 0.1 [*n*-Bu₄N][B(C₆F₅)₄]. Platinum working electrode.

3. Single Crystal X-Ray Structures of Compounds 5-9

3.1. Single crystal X-ray diffraction supplementary information for 5

A clear dark orange prismatic-like specimen of $C_{28}H_{34}Fe_2Si$, approximate dimensions 0.16 mm x 0.18 mm x 0.23 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured in a Bruker Kappa Apex II diffractometer.

Figure S26. Molecular structure of compound 5 with atoms labelled. Hydrogen atoms have been removed for clarity.

A total of 3719 frames were collected. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 72161 reflections to a maximum θ angle of 25.35° (0.83 Å resolution), of

which 9131 were independent (average redundancy 7.903, completeness = 99.1%, R_{int} = 3.66%, R_{sig} = 2.37%) and 7176 (78.59%) were greater than $2\sigma(F^2)$.

Unit cell

The final cell constants of a = 12.7847(4) Å, b = 15.1066(4) Å, c = 15.2614(5) Å, $\alpha = 96.779(1)^{\circ}$, $\beta = 108.237(2)^{\circ}$, $\gamma = 111.313(1)^{\circ}$, volume = 2516.90(13) Å³, are based upon the refinement of the XYZ-centroids of 150 reflections above 20 σ (I) with 6.510° < 2 θ < 52.34°.

Scaling

Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.914. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.7678 and 0.8296.

Structure solution and refinement

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group *P*-1, with Z = 4 for the formula unit, $C_{28}H_{34}Fe_2Si$. The final anisotropic full-matrix least-squares refinement on F² with 565 variables converged at R₁ = 3.90%, for the observed data and $wR_2 = 14.01\%$ for all data. The goodness-of-fit was 1.000. The largest peak in the final difference electron density synthesis was 0.669 e⁻/Å³ and the largest hole was -0.475 e⁻/Å³ with an RMS deviation of 0.088 e⁻/Å³. On the basis of the final model, the calculated density was 1.347 g/cm³ and F(000), 1072 e⁻.

Chemical formula	$C_{28}H_{34}Fe_2Si$			
Formula weight	510.34			
Temperature	296(2) K			
Wavelength	0.71073 Å			
Crystal size	0.16 x 0.18 x 0.23 mm			
Crystal habit	clear dark orange prismatic			
Crystal system	triclinic			
Space group	<i>P</i> -1			
Unit cell dimensions	a = 12.7847(4) Å	$\alpha = 96.779(1)^{\circ}$		
	<i>b</i> = 15.1066(4) Å	$\beta = 108.237(2)^{\circ}$		
	c = 15.2614(5) Å	$\gamma = 111.313(1)^{\circ}$		
Volume	2516.9(1) Å ³			
Z 4				
Density (calculated)	1.347 Mg/cm ³			
Absorption coefficient	1.213 mm ⁻¹			
F(000)	1072			

Table S1. Sample and crystal data for 5.

Theta range for data collection	1.46 to 25.35°		
Index ranges	-15<=h<=15, -18<=k<=18, -18<=l<=18		
Reflections collected	72161		
Independent reflections	9131 [R(int) = 0.0366]		
Coverage of independent reflections	99.1%		
Absorption correction	multi-scan		
Max. and min. transmission	0.8296 and 0.7678		
Structure solution technique	direct methods		
Structure solution program	SHELXS-97 (Sheldrick, 2008)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-97 (Sheldrick, 2008)		
Function minimized $\Sigma \text{ w}(\text{F}_{o}^{2} - \text{F}_{c}^{2})^{2}$			
Data / restraints / parameters	9131 / 0 / 565		
Goodness-of-fit on F ²	1.000		
Final R indices	7176 data; I> $2\sigma(I)$ R ₁ = 0.0390, wR ₂ = 0.1161		
	all data $R_1 = 0.0567, wR_2 = 0.1401$		
Weighting scheme	$w=1/[\sigma^{2}(F_{o}^{2})+(0.0908P)^{2}+1.1624P]$ where P=(F_{o}^{2}+2F_{c}^{2})/3		
Largest diff. peak and hole	0.669 and -0.475 eÅ ⁻³		
R.M.S. deviation from mean 0.088 eÅ ⁻³			

Table S2. Data collection and structure refinement for 5.

3.2. Single crystal X-ray diffraction supplementary information for 6

A clear intense orange plate-like specimen of $C_{24}H_{24}Fe_2OSi$, approximate dimensions 0.04 mm x 0.20 mm x 0.24 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured in a Bruker Kappa Apex II diffractometer.

Figure S27. Molecular structure of compound 6 with atoms labelled. Hydrogen atoms have been removed for clarity.

A total of 7663 frames were collected. The total exposure time was 63.86 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 68641 reflections to a maximum θ angle of 26.41° (0.80 Å resolution), of which 4330 were independent (average redundancy 15.852, completeness = 99.7%, R_{int} = 3.54%, R_{sig} = 1.61%) and 3317 (76.61%) were greater than $2\sigma(F^2)$.

Unit cell

The final cell constants of a = 7.5488(2) Å, b = 11.3227(2) Å, c = 12.7162(3) Å, $\alpha = 79.503(1)^{\circ}$, $\beta = 84.097(1)^{\circ}$, $\gamma = 82.215(1)^{\circ}$, volume = 1055.44(4) Å³, are based upon the refinement of the XYZ-centroids of 9858 reflections above $20 \sigma(I)$ with $4.488^{\circ} < 2\theta < 46.11^{\circ}$.

Scaling

Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.881. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.7234 and 0.9445.

Structure solution and refinement

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group *P*-1, with Z = 2 for the formula unit, $C_{24}H_{24}Fe_2OSi$. The final anisotropic full-matrix least-squares refinement on F² with 253 variables converged at R₁ = 3.99%, for the observed data and $wR_2 = 14.47\%$ for all data. The goodness-of-fit was 1.000. The largest peak in the final difference electron density synthesis was $0.530 \text{ e}^{-}/\text{Å}^{-3}$ and the largest hole was $-0.421 \text{ e}^{-}/\text{Å}^{-3}$ with an RMS deviation of $0.073 \text{ e}^{-}/\text{Å}^{-3}$. On the basis of the final model, the calculated density was 1.473 g/cm^{-3} and F(000), 484 e⁻.

Chemical formula	C ₂₄ H ₂₄ Fe ₂ OSi			
Formula weight	468.22			
Temperature	296(2) K			
Wavelength	0.71073 Å			
Crystal size	0.04 x 0.20 x 0.24 mm			
Crystal habit	clear intense orange plate			
Crystal system	triclinic			
Space group	<i>P</i> -1			
Unit cell dimensions	a = 7.5488(2) Å	$\alpha = 79.503(1)^{\circ}$		
	<i>b</i> = 11.3227(2) Å	$\beta = 84.097(1)^{\circ}$		
	c = 12.7162(3) Å	$\gamma = 82.215(1)^{\circ}$		
Volume 1055.44(4) Å ³				
Z	2			
Density (calculated)	1.473 Mg/cm ³			
Absorption coefficient	1.443 mm ⁻¹			
F(000)	484			

Table S3. Sample and crystal data for 6.

1.63 to 26.41°		
-9<=h<=9, -14<=k<=13, -15<=l<=15		
68641		
4330 [R(int) = 0.0354]		
99.7%		
multi-scan		
0.9445 and 0.7234		
direct methods		
SHELXS-97 (Sheldrick, 2008)		
Full-matrix least-squares on F ²		
SHELXL-97 (Sheldrick, 2008)		
$\Sigma w (F_o^2 - F_c^2)^2$	$v(F_o^2 - F_c^2)^2$	
4330 / 0 / 253		
1.000		
Final R indices $3317 \text{ data}; I > 2\sigma(I) R_1 = 0.0399, wR_2 =$		
all data	$R_1 = 0.0584, wR_2 = 0.1447$	
$w=1/[\sigma^{2}(F_{o}^{2})+(0.0869P)^{2}+0.7263P]$ where P=(F_{o}^{2}+2F_{c}^{2})/3		
Largest diff. peak and hole 0.530 and -0.421 eÅ ⁻³		
R.M.S. deviation from mean 0.073 eÅ ⁻³		
	1.63 to 26.41° $-9 \le h \le 9$, $-14 \le k \le 68641$ 4330 [R(int) = 0.035 99.7% multi-scan 0.9445 and 0.7234 direct methods SHELXS-97 (Shelds Full-matrix least-squ SHELXL-97 (Shelds Σ w(F _o ² - F _c ²) ² 4330 / 0 / 253 1.000 3317 data; I>2 σ (I) all data $w=1/[\sigma^{2}(F_{o}^{2})+(0.0866)]$ where P=(F _o ² +2F _c ²)/ 0.530 and -0.421 eÅ 0.073 eÅ ⁻³	

Table S4. Data collection and structure refinement for 6.

3.3. Single crystal X-ray diffraction supplementary information for 7

A clear intense orange plate-like specimen of $C_{22}H_{22}Fe_2OSi$, approximate dimensions 0.02 mm x 0.19 mm x 0.38 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured in a Bruker Kappa Apex II diffractometer.

Figure S28. Molecular structure of compound 7 with atoms labelled. Hydrogen atoms have been removed for clarity.

A total of 3884 frames were collected. The total exposure time was 16.18 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 23251 reflections to a maximum θ angle of 25.35° (0.83 Å resolution), of which 3514 were independent (average redundancy 6.617, completeness = 99.9%, R_{int} = 2.89%, R_{sig} = 1.90%) and 2945 (83.81%) were greater than $2\sigma(F^2)$.

Unit cell

The final cell constants of a = 7.54800(10) Å, b = 10.8128(2) Å, c = 12.8883(2) Å, $\alpha = 71.763(1)^{\circ}$, $\beta = 74.408(1)^{\circ}$, $\gamma = 86.198(1)^{\circ}$, volume = 962.10(3) Å³, are based upon the refinement of the XYZ-centroids of 9576 reflections above 20 σ (I) with 4.384° < 20 < 52.74°.

Scaling

Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.855. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.5855 and 0.9691.

Structure solution and refinement

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group *P*-1, with Z = 2 for the formula unit, $C_{22}H_{22}Fe_2OSi$. The final anisotropic full-matrix least-squares refinement on F² with 236 variables converged at R₁ = 3.13%, for the observed data and $wR_2 = 12.21\%$ for all data. The goodness-of-fit was 1.000. The largest peak in the final difference electron density synthesis was 0.559 e⁻/Å³ and the largest hole was -0.570 e⁻/Å³ with an RMS deviation of 0.090 e⁻/Å³. On the basis of the final model, the calculated density was 1.526 g/cm³ and F(000), 456 e⁻.

Chemical formula	C ₂₂ H ₂₂ Fe ₂ OSi		
Formula weight	442.19		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal size	0.02 x 0.19 x 0.38 mm		
Crystal habit	clear intense orange plate		
Crystal system	triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	$a = 7.54800(10) \text{ Å} \qquad \alpha = 71.763(1)^{\circ}$		
	$b = 10.8128(2)$ Å $\beta = 74.408(1)^{\circ}$		
	$c = 12.8883(2) \text{ Å} \qquad \gamma = 86.198(1)^{\circ}$		
Volume	962.10(3) Å ³		
Ζ	2		
Density (calculated)	1.526 Mg/cm ³		
Absorption coefficient	1.578 mm ⁻¹		
F(000)	456		

Table S5. Sample and crystal data for 7.

Theta range for data collection	1.72 to 25.35°		
Index ranges	-9<=h<=9, -12<=k<=13, -15<=l<=15		
Reflections collected	23251		
Independent reflections	3514 [R(int) = 0.0289]		
Coverage of independent reflections	99.9%		
Absorption correction	multi-scan		
Max. and min. transmission	0.9691 and 0.5855		
Structure solution technique	direct methods		
Structure solution program	SHELXS-97 (Sheldr	rick, 2008)	
Refinement method	Full-matrix least-squares on F ²		
Refinement program	efinement program SHELXL-97 (Sheldrick, 2008)		
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$		
Data / restraints / parameters	3514 / 0 / 236		
Goodness-of-fit on F ²	1.000		
Final R indices	2945 data; I>2o(I)	$R_1 = 0.0313, wR_2 = 0.0956$	
	all data	$R_1 = 0.0422, wR_2 = 0.1221$	
Weighting scheme	$w=1/[\sigma^2(F_o^2)+(0.0877P)^2+0.4271P]$ where P=(F_o^2+2F_c^2)/3		
Largest diff. peak and hole	0.559 and -0.570 eÅ ⁻³		
R.M.S. deviation from mean	0.090 eÅ ⁻³		

 Table S6. Data collection and structure refinement for 8.

3.4. Single crystal X-ray diffraction supplementary information for 8

A clear orange prismatic-like specimen of $C_{44}H_{42}Fe_4O_3Si_2$, approximate dimensions 0.21 mm x 0.35 mm x 0.40 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured in a Bruker Kappa Apex II diffractometer.

Figure S29. Molecular structure of compound 8 with atoms labelled. Hydrogen atoms have been removed for clarity.

A total of 3081 frames were collected. The total exposure time was 17.12 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 110301 reflections to a maximum θ angle of 25.35° (0.83 Å resolution), of which 7005 were independent (average redundancy 15.746, completeness = 100.0%, R_{int} = 4.11%, R_{sig} = 1.60%) and 6110(87.22%) were greater than $2\sigma(F^2)$.

Unit cell

The final cell constants of a = 12.9028(4) Å, b = 21.3942(6) Å, c = 14.7802(4) Å, $\beta = 110.413(1)^{\circ}$, volume = 3823.79(19) Å³, are based upon the refinement of the XYZ-centroids of 9861 reflections above 20 σ (I) with 4.811° < 20 < 52.72°.

Scaling

Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.811. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.5900 and 0.7300.

Structure solution and refinement

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group $P2_1/n$, with Z = 4 for the formula unit, C₄₄H₄₂Fe₄O₃Si₂. The final anisotropic full-matrix least-squares refinement on F² with 478 variables converged at R₁ = 2.68%, for the observed data and $wR_2 = 10.83\%$ for all data. The goodness-of-fit was 1.004. The largest peak in the final difference electron density synthesis was 0.392 e⁻/Å³ and the largest hole was -0.311 e⁻/Å³ with an RMS deviation of 0.092 e⁻/Å³. On the basis of the final model, the calculated density was 1.561 g/cm³ and F(000), 1848 e⁻.

Chemical formula	$C_{44}H_{42}Fe_4O_3Si_2$		
Formula weight	898.36		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal size	0.21 x 0.35 x 0.40 mm		
Crystal habit	clear orange prismatic		
Crystal system	monoclinic		
Space group	$P2_{1}/n$		
Unit cell dimensions	$a = 12.9028(4) \text{ Å} \qquad \alpha = 90^{\circ}$		
	$b = 21.3942(6)$ Å $\beta = 110.413(1)^{\circ}$		
	$c = 14.7802(4) \text{ Å} \qquad \gamma = 90^{\circ}$		
Volume	3823.79(19) Å ³		
Ζ	4		
Density (calculated)	1.561 Mg/cm ³		
Absorption coefficient	1.591 mm ⁻¹		
F(000)	1848		

Table S7. Sample and crystal data for 8.

Theta range for data collection	1.75 to 25.35°		
Index ranges	-15<=h<=15, -25<=k<=25, -17<=l<=17		
Reflections collected	110301		
Independent reflections	7005 [R(int) = 0.0411]		
Coverage of independent reflections	100.0%		
Absorption correction	multi-scan		
Max. and min. transmission	0.7300 and 0.5900		
Structure solution technique	direct methods		
Structure solution program	SHELXS-97 (Sheldrick, 2008)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-97 (Sheldrick, 2008)		
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	7005 / 0 / 478		
Goodness-of-fit on F ²	1.004		
Final R indices	6110 data; I>2σ(I)	$R_1 = 0.0268, wR_2 = 0.0852$	
	all data	$R_1 = 0.0351, wR_2 = 0.1083$	
Weighting scheme	$w=1/[\sigma^{2}(F_{o}^{2})+(0.0793P)^{2}+1.4351P]$ where P=(F _o ² +2F _c ²)/3		
Largest diff. peak and hole	0.392 and -0.311 eÅ ⁻³		
R.M.S. deviation from mean	0.092 eÅ ⁻³		

Table S8. Data collection and structure refinement for SoniaBrunna00678c.

3.5. Single crystal X-ray diffraction supplementary information for 9

A clear orange prismatic-like specimen of $C_{52}H_{48}Fe_5O_2Si_2$, approximate dimensions 0.14 mm x 0.20 mm x 0.21 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured in a Bruker Kappa Apex II diffractometer.

Figure S30. Molecular structure of compound 9 with atoms labelled. Hydrogen atoms have been removed for clarity.

A total of 1557 frames were collected. The total exposure time was 25.95 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 25839 reflections to a maximum θ angle of 25.35° (0.83 Å resolution), of which 7946 were independent (average redundancy 3.252, completeness = 98.1%, R_{int} = 6.22%, R_{sig} = 6.92%) and 5464 (68.76%) were greater than $2\sigma(F^2)$.

Unit cell

The final cell constants of a = 11.039(2) Å, b = 11.451(1) Å, c = 17.549(2) Å, $\alpha = 92.680(5)^{\circ}$, $\beta = 90.194(5)^{\circ}$, $\gamma = 90.255(5)^{\circ}$, volume = 2215.8(5) Å³, are based upon the refinement of the XYZ-centroids of 5648 reflections above $20 \sigma(I)$ with $5.140^{\circ} < 2\theta < 47.34^{\circ}$.

Scaling

Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.750. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.7175 and 0.7974.

Structure solution and refinement

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group *P*-1, with Z = 2 for the formula unit, $C_{52}H_{48}Fe_5O_2Si_2$. The final anisotropic full-matrix least-squares refinement on F^2 with 550 variables converged at $R_1 = 5.36\%$, for the observed data and $wR_2 = 17.14\%$ for all data. The goodness-of-fit was 1.080. The largest peak in the final difference electron density synthesis was $0.864 \text{ e}^2/\text{Å}^3$ and the largest hole was $-1.102 \text{ e}^2/\text{Å}^3$ with an RMS deviation of $0.214 \text{ e}^2/\text{Å}^3$. On the basis of the final model, the calculated density was 1.559 g/cm^3 and F(000), 1068 e⁻.

Chemical formula	$C_{52}H_{48}Fe_5O_2Si_2$		
Formula weight	1040.33		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal size	0.14 x 0.20 x 0.21 mm		
Crystal habit	clear orange prismatic		
Crystal system	triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	<i>a</i> = 11.039(2) Å	$\alpha = 92.680(5)^{\circ}$	
	b = 11.451(1) Å	$\beta = 90.194(5)^{\circ}$	
	c = 17.549(2) Å	$\gamma = 90.255(5)^{\circ}$	
Volume	2215.8(5) Å ³		
Z	2		
Density (calculated)	1.559 Mg/cm ³		
Absorption coefficient	1.694 mm ⁻¹		
F(000)	1068		

Table S9. Sample and crystal data for 9.

Theta range for data collection	1.78 to 25.35°		
Index ranges	-13<=h<=13, -13<=k	<=11, -21<=1<=21	
Reflections collected	25839		
Independent reflections	7946 [R(int) = 0.0622	2]	
Coverage of independent reflections	98.1%		
Absorption correction	multi-scan		
Max. and min. transmission	0.7974 and 0.7175		
Structure solution technique	direct methods		
Structure solution program	SHELXS-97 (Sheldrick, 2008)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-97 (Sheldrick, 2008)		
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	7946 / 0 / 550		
Goodness-of-fit on F ²	1.080		
Final R indices	5464 data; I>2σ(I)	$R_1 = 0.0536, wR_2 = 0.1288$	
	all data	$R_1 = 0.0914, wR_2 = 0.1714$	
Weighting scheme	$w=1/[\sigma^{2}(F_{o}^{2})+(0.0985P)^{2}+0.0000P]$ where P=(F _o ² +2F _c ²)/3		
Largest diff. peak and hole	0.864 and -1.102 eÅ ⁻³		
R.M.S. deviation from mean	0.214 eÅ ⁻³		

 Table S10. Data collection and structure refinement for 9.

Table S11. Intramolecular Fe-Fe distances in compounds 5-9.

	Distances (A)			
5	Fe1-Fe2	6.0556(8)	Fe3-Fe4	6.1853(8)
6		Fe1-Fe2	6.085(6)	
7		Fe1-Fe2	6.1174(6)	
	Fe1-Fe2	6.1052(5)	Fe2-Fe3	8.4029(6)
8	Fe1-Fe3	8.1369(6)	Fe2-Fe4	6.3853(7)
	Fe1-Fe4	7.3512(7)	Fe3-Fe4	5.9037(5)
	Fe1-Fe2	5.480(1)	Fe2-Fe4	7.465(1)
	Fe1-Fe3	6.077(1)	Fe2-Fe5	9.327(1)

Distances (Å)

9	Fe1-Fe4	8.567(1)	Fe3-Fe4	6.501(1)
	Fe1-Fe5	6.751(1)	Fe3-Fe5	7.114(1)
	Fe2-Fe3	6.056(1)	Fe4-Fe5	5.444(1)

Figure S31. Hydrogen bond (in cyan) between hydroxyl groups in compound 7.

Table S12. Hydrogen bond parameters in compound 7.

Figure S32. View along the a axis of the packing of compounds 6 and 7; hydrogen bonds in 7 are depicted in cyan.

Table S13. Relevant bond distances and angles in compounds 5-9.

Bond distances (Å)							
5	Si1-C1	1.872(3)	Si2-C29	1.868(3)			
	Si1-C11	1.859(3)	Si2-C39	1.859(4)			
	Si1-C21	1.868(3)	Si2-C49	1.853(5)			
	Si1-C23	1.877(3)	Si2-C51	1.881(4)			
6	Si1-C1	1.855(4)	Si1-C23	1.794(7)			
	Si1-C11	1.848(4)	Si1-O1	1.654(4)			
7	Si1-C1	1.841(3)	Si1-C21	1.856(5)			
	Si1-C11	1.856(3)	Sil-Ol	1.650(3)			
8	Si1-C1	1.840(2)	Si2-C21	1.839(2)			
	Si1-C11	1.840(3)	Si2-C31	1.840(3)			
	Si1-O1	1.620(2)	Si2-O1	1.620(2)			
	Si1-O2	1.642(2)	Si2-O2	1.637(2)			
9	Si1-C1	1.851(5)	Si2-C31	1.842(5)			
	Si1-C11	1.860(3)	Si2-C41	1.830(5)			
	Si1-C21	1.851(5)	Si2-O1	1.616(3)			
	Sil-O1	1.638(3)	Si2-O2	1.652(4)			
Bond angles (°)							
	C1-Si1-C11	109.2(1)	C29-Si2-C39	109.6(2)			
5	C1-Si1-C21	107.2(2)	C29-Si2-C49	108.9(2)			
	C1-Si1-C23	111.2(1)	C29-Si2-C51	106.9(2)			
	C11-Si1-C21	108.0(2)	C39-Si2-C49	109.4(2)			
	C11-Si1-C23	110.7(2)	C39-Si2-C51	111.3(2)			
	C21-Si1-C23	110.4(2)	C49-Si2-C51	109.8(2)			
6	C1-Si1-C11	110.3(2)	C11-Si1-C23	111.7(2)			
	C1-Si1-C23	111.2(2)	C11-Si1-O1	109.1(2)			
	C1-Si1-O1	110.1(2)	C23-Si1-O1	104.4(3)			
7	C1-Si1-C11	108.9(2)	C11-Si1-C21	111.9(2)			
	C1-Si1-C21	112.1(2)	C11-Si1-O1	105.7(2)			
	C1-Si1-O1	107.9(2)	C21-Si1-O1	110.1(2)			
8	C1-Si1-C11	109.5(1)	C21-Si2-C31	109.1(1)			
	C1-Si1-O1	110.3(1)	C21-Si2-O1	111.5(1)			
	C1-Si1-O2	106.7(1)	C21-Si2-O3	105.1(1)			
	C11-Si1-O1	109.3(1)	C31-Si2-O1	111.2(1)			
	C11-Si1-O2	112.3(1)	C31-Si2-O3	111.2(1)			
	01-Si1-O2	108.8(1)	01-Si2-O3	108.6(1)			
9	C1-Si1-C11	111.4(2)	C31-Si2-C41	113.3(2)			
	C1-Si1-C21	111.0(2)	C31-Si2-O1	109.4(2)			
	C1-Si1-O1	108.8(2)	C31-Si2-O2	110.0(2)			
	C11-Si1-C21	109.7(2)	C41-Si2-O1	107.6(2)			
	C11-Si1-O1	108.2(2)	C41-Si2-O2	109.0(2)			
	C21-Si1-O1	111.0(2)	01-Si2-O2	107.4(2)			

4. Theoretical studies of Compounds 5-7

Figure S33. Free energy values (kJ/mol) for the stecheometric reactions giving place to compounds **5** and **6**. Both reactions in vacuum are thermodynamically favored from the fragments resulting from the THF cleavage.

Figure S34. Molecular graph for Compound 5 obtained with Quantum Theory of Atoms in Molecules (QTAIM) showing only weak non-covalent interactions between ferrocenyl units and substituents.

Figure S35. Compound **5:** orbital energies (hartrees), HOMO-LUMO gap (eV) and UV-Vis spectrum at the BPW91/6-31+G(d) level of theory obtained by TD-DFT+PCM (CH₂Cl₂) calculations (see also Table **S14**).

Table S14. List of peaks from the theoretical UV-Vis spectrum of neutral Compound **5** (only oscillator strengths f > 0.0010 are shown) along with their corresponding orbital contributions. Orbital contributions below 10% are omitted for the sake of clarity. Main peaks are in bold characters and illustrated in Figure **S35**. Calculations were carried out with TD-DFT+PCM (CH₂Cl₂) at the BPW91/6-31+G(d) level of theory.

```
439.8 nm, 2.82 eV, f = 0.0018 H-1->L+1 (+71%) H-1->L (+16%)
434.7 nm, 2.85 eV, f = 0.0019 H ->L (+33%) H-1->L (30%)
433.1 nm, 2.86 eV, f = 0.0034 H ->L (+27%) H-3->L (22%), H-1->L (+17%)
426.2 nm, 2.91 eV, f = 0.0014
                               H ->L+2(+69%) H-2->L+1(11%)
424.9 \text{ nm}, 2.92 \text{ eV}, f = 0.0017
                               H-3->L+1(+43%) H-2->L+2(+22%)
423.4 \text{ nm}, 2.93 \text{ eV}, f = 0.0016
                              H-1->L+2(+30%) H-4->L (22%)
                               H-2->L+2(+15%) H-3->L+1(+11%)
419.8 nm, 2.95 eV, f = 0.0013
                               H-4->L+1(+71%) H-3->L+2(13%)
417.3 \text{ nm}, 2.97 \text{ eV}, f = 0.0017
                               H-5->L(+82%)
389.2 nm, 3.19 eV, f = 0.0047
                               H -> L+4 (+61%) H-1 -> L+3(19%)
379.8 \text{ nm}, 3.26 \text{ eV}, f = 0.0010
                               H-2->L+4(+97%)
368.7 nm, 3.36 eV, f = 0.0037
                               H-4->L+4 (+88%)
362.5 nm, 3.42 eV, f = 0.0012 H-5->L+4(+96%)
```

A peak around 450 nm is characteristic from ferrocenyl compounds. For compound **5**, a main peak at 433.1 nm is found, involving three different orbital transitions. Note that the HOMO and HOMO-n (n = 1, 2, 3) orbitals are very close in energy. Interestingly, unoccupied orbitals LUMO and LUMO+4 (see Figure **S35**), which are involved in the most relevant transitions of the spectrum, present a remarkable contribution of the vinyl substituent.