A Comparative Study of C₂H₂ Adsorption Properties in Five Isomeric

Copper-Based MOFs Based on Naphthalene-Derived Diisophthalates

Fengli Chen, Dongjie Bai, Donghao Jiang, Yao Wang, Yabing He* College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China. E-mail: <u>heyabing@zjnu.cn</u>.

Fig. S1 The photographs of the as-synthesized (a) ZJNU-71, (b) ZJNU-72, (c) ZJNU-73, (d) ZJNU-74 and (e) NOTT-103.

Fig. S2 Comparison of the experimental (red) and simulated (black) PXRD patterns of (a) **ZJNU-71**, (b) **ZJNU-72**, (c) **ZJNU-73**, (d) **ZJNU-74**, and (e) **NOTT-103**.

Fig. S3 TGA curves for the as-synthesized samples of (a) **ZJNU-71**, (b) **ZJNU-72**, (c) **ZJNU-73**, (d) **ZJNU-74**, and (e) **NOTT-103** under nitrogen atmosphere.

Fig. S4 Comparison of FTIR spectra of as-synthesized (a) **ZJNU-71**, (b) **ZJNU-72**, (c) **ZJNU-73**, (d) **ZJNU-74**, and (e) **NOTT-103** and their corresponding organic ligands.

Fig. S5 Topological structure of **ZJNU-71**: views of (a) dinuclear $[Cu_2(COO)_4]$ SBU and (b) the organic linker as 4-connected nodes; (c) the schematic representation of the *ssa* topology.

Fig. S6 Topological structure of **ZJNU-73**: views of (a) dinuclear $[Cu_2(COO)_4]$ SBU and (b) the organic linker as 4-connected nodes; (c) the schematic representation of the *nbo* topology.

 $S_{\text{BET}} = 1/(2.10517 \times 10^{-7} + 0.00234)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 1860 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = (1/0.00207)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2103 \text{ m}^2 \text{ g}^{-1}$ **Fig. S7** (a) BET and (b) Langmuir plots for **ZJNU-71**.

 $S_{\text{BET}} = 1/(1.01745 \times 10^{-6} + 0.00191)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2278 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = (1/0.00171)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2546 \text{ m}^2 \text{ g}^{-1}$ **Fig. S8** (a) BET and (b) Langmuir plots for **ZJNU-72**.

 $S_{\text{BET}} = 1/(5.50012 \times 10^{-7} + 0.00183)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2378 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = (1/0.00162)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2687 \text{ m}^2 \text{ g}^{-1}$ **Fig. S9** (a) BET and (b) Langmuir plots for **ZJNU-73**.

 $S_{\text{BET}} = 1/(6.28574 \times 10^{-7} + 0.00194)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2243 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = (1/0.00175)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2488 \text{ m}^2 \text{ g}^{-1}$ **Fig. S10** (a) BET and (b) Langmuir plots for **ZJNU-74**.

 $S_{\text{BET}} = \frac{1}{(3.94946 \times 10^{-7} + 0.00146)} / 22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2981 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = \frac{(1/0.00135)}{22414} \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 3225 \text{ m}^2 \text{ g}^{-1}$

Fig. S11 (a) BET and (b) Langmuir plots for NOTT-103.

Fig. S12 (a) C_2H_2 , (b) CO_2 and (c) CH_4 isotherms of **ZJNU-71** at three different temperatures of 278 K, 288 K and 298 K. The solid and open symbols represent adsorption and desorption, respectively.

Fig. S13 Comparison of the pure-component isotherm data for (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-71** with the fitted isotherms (shown by continuous solid lines) at 278 K, 288 K and 298 K.

Fig. S14 IAST selectivities for the equimolar (a) C_2H_2/CH_4 and (b) CO_2/CH_4 gas mixtures in **ZJNU-71** at three different temperatures of 278 K, 288 K and 298 K.

...... ppm . 140

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

....... - - - ------ppm

Fig. S15 ¹H and ¹³C NMR spectra of the organic ligands.

MOFs	ZJNU-71	ZJNU-72	ZJNU-73	ZJNU-74
Empirical formula	$C_{38}H_{46}Cu_2N_4O_{15}\\$	$C_{39}H_{48}Cu_2N_4O_{15}$	$C_{44}H_{58}Cu_2N_6O_{16}\\$	$C_{38}H_{48}Cu_2N_4O_{16}$
Formula weight	925.87	939.89	1054.04	943.88
λ (Å)	0.71073	1.54184	0.71069	1.54184
Crystal system	Hexagonal	Trigonal	Trigonal	Hexagonal
Space group	P6 ₃ /mmc	<i>R</i> -3m	<i>R</i> -3m	P6 ₃ /mmc
Unit cell dimensions	<i>a</i> = 18.6937(6) Å	<i>a</i> = 18.5945(3) Å	a = 18.563(3) Å	a = 18.3150(7) Å
	b = 18.6937(6) Å	b = 18.5945(3) Å	b = 18.563(3) Å	b = 18.3150(7) Å
	c = 23.5643(14) Å	c = 38.5773(9) Å	c = 39.708(6) Å	c = 26.7665(14) Å
	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$
	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$
	$\gamma = 120^{\circ}$	$\gamma = 120^{\circ}$	$\gamma = 120^{\circ}$	$\gamma = 120^{\rm o}$
$V(\text{\AA}^3)$	7131.4(5)	11551.3(4)	11850(3)	7775.6(6)
Ζ	6	9	9	6
$D_{\rm c} ({\rm g \ cm}^{-3})$	1.294	1.216	1.329	1.209
$\mu (\mathrm{mm}^{-1})$	0.958	1.537	0.877	1.539
F(000)	2880	4392	4950	2940
Crystal size (mm)	0.28 × 0.21 × 0.09	0.23 × 0.18 × 0.13	0.22 ×0.14 ×0.13	0.23 ×0.15 ×0.10
θ range for data collection (°)	1.258 to 27.544	3.437 to 74.661	1.367 to 27.586	4.322 to 74.004
Limiting indices	$-24 \le h \le 24$	$-20 \le h \le 23$	$-24 \le h \le 24$	$-20 \le h \le 13$
	$-24 \le k \le 24$	$-22 \le k \le 21$	$-24 \le k \le 24$	$-15 \le k \le 22$
	$-30 \le l \le 30$	$-47 \le l \le 45$	$-51 \le l \le 51$	$-32 \le l \le 27$
Reflections collected / unique	115435 / 3063	16158 / 2856	78489 / 3341	23236 / 2905
R _{int}	0.1228	0.0266	0.1116	0.0551
Max. and min. transmission	0.9214 and 0.7817	0.897 and 0.827	0.8992 and 0.8376	0.857 and 0.758
	Full-matrix	Full-matrix	Full-matrix	Full-matrix
Refinement method	least-squares	least-squares	least-squares	least-squares
	on F^2	on F^2	on F^2	on F^2
Data/restraints/parameters	3063 / 91 / 122	2856 / 109 / 122	3341 / 60 / 100	2905 / 103 / 119
Goodness-of-fit on F^2	1.059	1.006	1.090	1.103
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0602$	$R_1 = 0.0695$	$R_1 = 0.0756$	$R_1 = 0.1205$
	$wR_2 = 0.1749$	$wR_2 = 0.2158$	$wR_2 = 0.2082$	$wR_2 = 0.3686$
R indices (all data)	$R_1 = 0.1153$	$R_1 = 0.0724$	$R_1 = 0.1075$	$R_1 = 0.1969$
	$wR_2 = 0.1971$	$wR_2 = 0.2191$	$wR_2 = 0.2271$	$wR_2 = 0.4127$
Largest diff. peak and hole $(e.Å^{-3})$	0.902 and -0.330	1.276 and -0.795	0.971 and -0.606	0.565 and -0.361
CCDC	1558046	1558047	1531020	1558048

 Table S1 Crystal data and structure refinement for ZJNU-71-74.

Table S2 Langmuir-Freundich parameters for adsorption of C_2H_2 , CO_2 , and CH_4 in ZJNU-71

	$q_{\rm sat}$ (mmol g ⁻¹)	b_0 (kPa) ^{-ν}	E (kJ mol ⁻¹)	v
C_2H_2	13.60272	1.77775×10 ⁻⁶	24.6	0.84913
CO ₂	24.42784	2.15324×10 ⁻⁷	23.2	1
CH ₄	19.9899	5.23044×10 ⁻⁷	17.2	1

Calculation of Isosteric Heats of Adsorption

The isosteric heats of adsorption (Q_{st}) were calculated using the Clausius-Clapeyron equation based on pure-component isotherms collected at three different temperatures of 278 K, 288 K and 298 K. The Q_{st} was defined as

$$Q_{st} = -R \left(\frac{\partial Inp}{\partial (1/T)} \right)_q$$

where p is the pressure, T is the temperature, R is the gas constant, and q is the adsorption amount. These calculations were done through the "Heat of Adsorption" function embedded in the software supplied by Micromeritics ASAP 2020 HD88 surface-area-and-pore-size analyzer machine.

Fitting of Pure-Component Isotherms

The pure-component C_2H_2 , CO_2 and CH_4 adsorption isotherms measured at 278 K, 288 K and 298 K were fitted with the single-site Langmuir-Freundlich model

$$q = \frac{q_{sat}bp^{\nu}}{1+bp^{\nu}}$$
, with *T*-dependent parameter $b = b_o \exp(\frac{E_a}{RT})$

where *q* is the adsorbed amount (mmol g⁻¹), q_{sat} is the monolayer adsorption capacity (mmol g⁻¹), *p* is the equilibrium pressure (kPa), and *b* and *v* is the Langmuir and Freundlich constants. Fig S13 provides a comparison of the experimental isotherm data for C₂H₂, CO₂ and CH₄ in **ZJNU-71** with the isotherm fits. The corresponding fitting parameters are provided in Table S2.