Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

> Electronic Supplementary Information (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2017

Supporting Information For

Rapid and highly sensitive detection of extracellular and intracellular H₂S by an azidefunctionalized Al(III)-based metal-organic framework

Soutick Nandi, Helge Reinsch, Sooram Banesh, Norbert Stock, Vishal Trivedi, and Shyam Biswas*

* To whom correspondence should be addressed. E-mail: sbiswas@iitg.ernet.in. Tel: (+)91-3612583309. Fax: (+)91-3612582349.

Figure S1. FE-SEM images of 1.

Figure S2. XRPD patterns of 1 in different forms: as-synthesized, thermally activated and after H_2S sensing experiment.

Figure S3. FT-IR spectra of as-synthesized 1 (black), activated (red) 1', and 1' after treatment with Na_2S (green). The absorption bands for the $-N_3$ group are high-lighted by the blue ovals.

Figure S4. TG curves of as-synthesized 1 (black) and activated 1' (red) recorded in an air atmosphere in the temperature range of 25-700 °C with a heating rate of 5 °C min⁻¹.

Figure S5. N_2 adsorption (solid symbols) and desorption (empty symbols) isotherms of thermally activated 1' recorded at -196 °C.

Figure S6. CO₂ adsorption isotherm of thermally activated 1' recorded at 25 °C.

Figure S7. Fluorescence turn-on response of 1' (in pure aqueous medium) towards gradual addition of Na₂S at a regular time interval of 1 min up to 40 min. Inset: time-dependence of the fluorescence emission intensity ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S8. Fluorescence response of 1' before (black) and after (red) addition of alanine at 15 min ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S9. Fluorescence response of 1' before (black) and after (red) addition of cysteine at 15 min ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S10. Fluorescence response of **1'** before (black) and after (red) addition of glutathione at 15 min ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S11. Fluorescence response of 1' before (black) and after (red) addition of serine at 15 min ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S12. Fluorescence response of 1' before (black) and after (red) addition of NaCl at 15 min ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S13. Fluorescence response of 1' before (black) and after (red) addition of NaBr at 15 min ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S14. Fluorescence response of **1'** before (black) and after (red) addition of NaI at 15 min ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S15. Fluorescence response of **1'** before (black) and after (red) addition of NaNO₂ at 15 min ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S16. Fluorescence response of **1'** before (black) and after (red) addition of NaNO₃ at 15 min ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S17. Fluorescence response of **1'** before (black) and after (red) addition of Na₂S₂O₃ at 15 min ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S18. Fluorescence response of **1'** before (black) and after (red) addition of Na₂SO₃ at 15 min ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S19. Fluorescence response of **1'** before (black) and after (red) addition of Na₂SO₄ at 15 min ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S20. Fluorescence response of **1'** before (black) and after (red) addition of NaHSO₃ at 15 min ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S21. Fluorescence response of 1' before (black) and after (red) addition of NaHSO₄ at 15 min ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S22. Fluorescence response of 1' towards Na₂S in presence of alanine ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S23. Fluorescence response of 1' towards Na₂S in presence of cysteine ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Wavelength (nm) Figure S24. Fluorescence response of 1' towards Na₂S in presence of glutathione ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S25. Fluorescence response of 1' towards Na₂S in presence of serine ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S26. Fluorescence response of 1' towards Na₂S in presence of NaCl ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S27. Fluorescence response of 1' towards Na₂S in presence of NaBr ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S28. Fluorescence response of 1' towards Na₂S in presence of NaI ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S29. Fluorescence response of 1' towards Na₂S in presence of NaNO₂ ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S30. Fluorescence response of 1' towards Na₂S in presence of NaNO₃ ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S31. Fluorescence response of 1' towards Na₂S in presence of Na₂S₂O₃ ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S32. Fluorescence response of 1' towards Na₂S in presence of Na₂SO₃ ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S33. Fluorescence response of 1' towards Na₂S in presence of Na₂SO₄ ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S34. Fluorescence response of 1' towards Na₂S in presence of NaHSO₃ ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S35. Fluorescence response of 1' towards Na₂S in presence of NaHSO₄ ($\lambda_{ex} = 330$ nm and $\lambda_{em} = 405$ nm).

Figure S36. Change in the fluorescence intensity of 1' in 10 mM HEPES buffer as a function of concentration of Na₂S.

Figure S37. The asymmetric unit of 1 with numbering scheme as used below. Please note that standard uncertainties for fragments refined as rigid bodies are not given.

05	1.822(25)
O5	1.831(26)
01	1.917(21)
O2	1.932(21)
O4	1.936(20)
O3	1.975(21)
C1	1.222(26)
C8	1.253(27)
C8	1.260(29)
C1	1.240(26)
C2	1.405(19)
C3	1.4024
C7	1.4044
C4	1.3955
C5	1.3887
N1	1.4561
	O5 O5 O1 O2 O4 O3 C1 C8 C8 C1 C2 C3 C7 C4 C5 N1

	C2	1.4024
C5	C6	1.4009
C6	C7	1.4037
	C8	1.427(20)
N1	N2	1.2311
N2	N3	1.1192
Ow1	N3	3.278(30)

Figure S38. HR-MS spectrum of un-treated 1' after digestion in MeOH/HF. The spectrum shows m/z (negative ion mode) peak at 206.0684, which corresponds to $(M-H)^-$ ion $(M = mass of H_2IPA-N_3 ligand)$.

Figure S39. HR-MS spectrum of Na₂S-treated **1'** after digestion in MeOH/HF. The spectrum shows m/z (negative ion mode) peaks at 206.0657 and 180.0718, which correspond to $(M-H)^{-1}$ ion of H₂IPA-N₃ and reduced H₂IPA-N₃ (i.e. H₂IPA-NH₂) ligands, respectively.

Figure S40. ¹H NMR spectra of (a) un-treated **1'** and (b) Na₂S-treated **1'** after digestion in DMSO-d₆/HF. Compared to un-treated **1'**, new peaks for H₂IPA-NH₂ ligand arise at 7.96 and 8.28 ppm in case of Na₂S-treated **1'**, which prove partial conversion of azide functionality into amine. To calculate the percent of conversion, the peak corresponding to two equivalent aromatic protons of H₂IPA-N₃ ligand is set to an integration of 1 and all new peaks are integrated accordingly. For Na₂S-treated **1'**, the integrations of the new peaks are approx. ~0.39 and ~0.20 with respect to two equivalent aromatic protons of H₂IPA-N₃ ligand. Hence, percentage conversion of azide to amine is ~28%.

Tuble SH Shactara	i remientente parameters for r.
formula	$AlO_5C_8H_3N_3$
crystal system	tetragonal
space group	$I4_1/a$
a / Å	21.4250(14)
<i>c</i> / Å	10.7954(11)
V/ Å ³	4955.4(7)
R _{wp} / %	4.7
R _p / %	3.5
R _{Bragg} / %	1.8
GoF	2.8

Table S1. Structural refinement parameters for 1

Sl. No.	MOF	Response Time (s)	Detection Limit (µM)	Analyte	Ref.
1	CAU-10-N ₃	420	2.65	Na ₂ S	This work
2	DUT-52-(NO ₂) ₂	3300	20.0	Na ₂ S	1
3	Ce-UiO-66-N ₃	760	12.2	NaSH	2
4	Ce-UiO-66-NO ₂	760	34.84	NaSH	2
6	IRMOF-3-N ₃	< 120	28.3	NaSH	3
7	Zr-UiO-66-NO ₂	≈ 460	188	Na ₂ S	4
8	Zr-UiO-66-N ₃	180	118	Na ₂ S	5
9	MN-ZIF-90	-	-	-	6
10	Al-TCPP-Cu	-	-	-	7
11	Al-MIL-101-N ₃	-	100 (UV-lamp excitation); 0.1 (laser excitation)	Na ₂ S	8
12	Eu ³⁺ /Cu ²⁺ @UiO-66- (COOH) ₂	30	5.45	NaSH	9

Table S2. Comparison of the response time, detection limit and analyte used for the detection of H_2S by MOFs reported till date.

Table S3. Comparison of the concentration of biological analytes found in real system and in sensing medium of this work.

Sl.	Analytes	Concentration of	Concentration of Analyte	Final Concentration of	Ref.
No.		Analyte in Human	Added to the Sensing	Analyte in Sensing	
		Blood	Medium of This Work	Medium of This Work	
		(mg/mL)	(mg/100 µL) [#]	(mg/mL)	
1	chloride (Cl-)	5.87	1.04	0.48	10
2	bromide (Br-)	(2.5-11.7) ×10 ⁻³	1.83	0.86	11
3	iodide (I ⁻)	(14.1-812) ×10 ⁻⁶	2.6	1.22	12
4	alanine	3.41×10 ⁻²	1.58	0.74	13
5	serine	1.12×10 ⁻²	1.87	0.87	13
6	cysteine	1.18×10 ⁻²	2.15	1.01	13
7	glutathione	0.33-0.24	5.47	2.57	14

[#] Concentration of each analyte added to the sensing medium = $17.8 \mu mol/100 \mu L$ (10 equivalents with respect to the azide functionality).

Crystallographic Information File (CIF) for Compound 1:

data compound1 chemical name CAU-10-N3 _cell_length a 21.4250(14) cell length b 21.4250(14) _cell_length c 10.7954(11) _cell_angle_alpha 90 cell angle beta 90 _cell_angle_gamma 90 _cell_volume 4955.42(81) symmetry space group name H-M I41/A loop symmetry equiv pos as xyz '-x, -y+1/2, -z+1/4' '-x+1/2, -y+1/2, z+1/2' '-y, x+1/2, z+1/4' '-y+1/2, x+1/2, -z+1/2' 'y, -x, -z' 'y+1/2, -x, z-1/4' 'x, y, z' 'x+1/2, y, -z-1/4' '-x+1/2, -y, -z-1/4' '-x, -y, z' '-y+1/2, x, z-1/4' '-y, x, -z' y+1/2, -x+1/2, -z+1/2''y, -x+1/2, z+1/4' 'x+1/2, y+1/2, z+1/2' 'x, y+1/2, -z+1/4' loop_ atom site label _atom_site_type symbol atom site symmetry multiplicity atom site fract x atom site fract y atom site fract z _atom_site occupancy atom site B iso or equiv All Al 0 0.24869(76) 0.31596(52) 0.3680(13) 1 0.56(30) O1 O 0 0.16007(62) 0.31666(72) 0.3922(15) 1 0.56(30) O2 O 0 0.33766(62) 0.32074(77) 0.3405(16) 1 0.56(30) O3 O 0 0.23356(80) 0.38401(83) 0.2483(13) 1 0.56(30) O4 O 0 0.25485(71) 0.38073(71) 0.4924(13) 1 0.56(30) O5 O 0 0.26052(84) 0.25821(81) 0.4896(23) 1 0.56(30) C2 C 0 0.5611108 0.2891358 0.3697755 1 3.63(46) C5 C 0 0.4477892 0.3096717 0.2490943 1 3.63(46) C1 C 0.62364(87) 0.2795(11) 0.4041(21) 1 3.63(46)C3 C 0 0.5595848 0.3034112 0.2430319 1 3.63(46) C7 C 0 0.5049743 0.2851878 0.4364835 1 3.63(46) C8 C 0 0.38245(93) 0.2976(11) 0.3994(24) 1 3.63(46) C6 C 0 0.4479794 0.29574 0.3758802 1 3.63(46) C4 C 0 0.5029958 0.3132339 0.1820676 1 3.63(46)

N1 N 0 0.4954411 0.3467218 0.06565453 1 3.63(46) N2 N 0 0.5424529 0.3442848 0.0002683282 1 3.63(46)

- N3 N 0 0.5851322 0.3419312 -0.05932386 1 3.63(46)
- Ow1 O 0 0.4300(14) 0.4524(13) 0.2962(27) 1.000(31) 3.63(46)

References:

- 1. R. Dalapati, S. N. Balaji, V. Trivedi, L. Khamari and S. Biswas, *Sens. Actuators., B*, 2017, **245**, 1039-1049.
- 2. A. Buragohain and S. Biswas, *CrystEngComm*, 2016, **18**, 4374-4381.
- 3. X. Zhang, J. Zhang, Q. Hu, Y. Cui, Y. Yang and G. Qian, *Appl. Surf. Sci.*, 2015, **355**, 814.
- 4. S. S. Nagarkar, A. V. Desai and S. K. Ghosh, Chem. Eur. J., 2015, 21, 9994-9997.
- 5. S. S. Nagarkar, T. Saha, A. V. Desai, P. Talukdar and S. K. Ghosh, *Sci. Rep.*, 2014, 4, 7053-7058.
- 6. H. Li, X. Feng, Y. Guo, D. Chen, R. Li, X. Ren, X. Jiang, Y. Dong and B. Wang, *Sci. Rep.*, 2014, 4, 4366-4370.
- 7. Y. Ma, H. Su, X. Kuang, X. Li, T. Zhang and B. Tang, *Anal. Chem.*, 2014, **86**, 11459-11463.
- 8. A. Legrand, A. Pastushenko, V. Lysenko, A. Geloen, E. A. Quadrelli, J. Canivet and D. Farrusseng, *ChemNanoMat*, 2016, **2**, 866-872.
- 9. X. Zhang, Q. Hu, T. Xia, J. Zhang, Y. Yang, Y. Cui, B. Chen and G. Qian, ACS Appl. Mater. Interfaces, 2016, 8, 32259–32265.
- 10. H. C. Gram, J. Biol. Chem., 1924, 61, 337-343.
- 11. H. A. Olszowy, J. Rossiter, J. Hegarty and P. Geoghegan, J. Anal. Toxicol., 1998, 22, 225-230.
- 12. T. Zhang, Q. Wu, H. W. Sun, J. Rao and K. Kannan, *Environ. Sci. Technol.*, 2010, 44, 6947-6953.
- 13. W. H. Stein and S. Moore, J. Biol. Chem., 1954, 211, 915-926.
- 14. F. Michelet, R. Gueguen, P. Leroy, M. Wellman, A. Nicolas and G. Siest, *Clin. Chem.*, 1995, **41**, 1509-1517.