Supporting Information

Systematic Size Mediated Trapping of Anions of Varied Dimensionality within Dimeric Capsular Assembly of a Flexible Neutral Bis-Urea Platform

Utsab Manna, Santanu Kayal, Biswajit Nayak and Gopal Das*

Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781 039, India. Fax: +91-361-258-2349; Tel: +91-361-258-2313 Email: gdas@iitg.ernet.in

SI.	Content	Page No.		
1.	Figure S1, S2. ¹ H-NMR and ¹³ C-NMR spectra of L	S2		
2.	Figure S3, S4. HRMS (ESI) and FT-IR spectra of L	S3		
3.	Figure S5, S6. 2D-NOESY spectra of L and ¹ H-NMR spectra of complex 1	S4		
4.	Figure S7, S8. FT-IR spectrum and PXRD pattern of complex 1	S5		
5.	Figure S9, S10. 2D-NOESY spectra of L and TGA/DSC spectra of complex 1	S6		
6.	Figure S11, S12. ¹ H-NMR and FT-IR spectra of 2a	S7		
7.	Figure S13, S14. PXRD pattern and 2D-NOESY spectra of complex 2a	S 8		
8.	Figure S15, S16. ¹ H-NMR and PXRD pattern of complex 2b	S9		
9.	Figure S17, S18. 2D-NOESY spectra of complex 2b and ¹ H-NMR spectra of complex 3			
10.	Figure S19, S20. FT-IR spectra and PXRD pattern of complex 3	S11		
11.	Figure S21, S22. 2D-NOESY spectra of complex 3 and ¹ H-NMR spectra of complex 4	S12		
12.	Figure S23, S24. FT-IR spectrum and PXRD pattern of complex 4	S13		
13.	Figure S25, S26. 2D-NOESY spectra of complex 4 and ¹ H-NMR spectra of complex 5	S14		
14.	Figure S27, S28. ¹³ C-NMR and FT-IR spectra of complex 5	S15		
15.	Figure S29, S30. PXRD pattern and 2D-NOESY spectra of complex 5	S16		
16.	Figure S31, S32. ¹ H-NMR and FT-IR spectra of complex 6	S17		
17.	Figure S33-S34. PXRD pattern and 2D-NOESY spectra of complex 6	S18		
18.	Figure S35. 2D-NOESY spectra of complex 6 in presence of excess $(n-TBA)_2SO_4$ salt	S19		
19.	Figure S36. Expanded ¹ H NMR titration stack plot of L with added <i>n</i> -TBAF in DMSO-d ₆	S19		
20.	Figure S37, S38. Expanded ¹ H NMR titration stack plot of L with added <i>n</i> -TBACl in			
	DMSO-d ₆ and corresponding job's plot	S20		
21.	Figure S39, S40. Expanded ¹ H NMR titration stack plot of L with added <i>n</i> -TBABr and <i>n</i> -			
	TBAI in DMSO-d ₆ and corresponding job's plot	S21		
22.	Figure S41, S42. Expanded ¹ H NMR titration stack plot of L with added $(n-TBA)_2SO_4$ in			
	DMSO-d ₆ and corresponding job's plot	S22		
23.	Figure S43, S44. Expanded ¹ H NMR titration stack plot of L with added <i>n</i> -TBAOCOCH ₄			
	in DMSO-d ₆ and corresponding job's plot	S23		
24.	Figure S45, S46. Expanded ¹ H NMR stack plot of L with added n -TBAH ₂ PO ₄ in DMSO-d ₆			
	and corresponding job's plot	S24		
25.	Figure S47. Expanded ¹ H NMR titration stack plot of L with added <i>n</i> -TBAHCO ₃ in DMSO-			
	d_6	S25		
26.	Table S1. Hydrogen bonding table of all anion complexes	S25-S26		
24	Figure S48. Scatter plot of N-H···A angle vs. H···A distance all anion complexes of L	S27		
25	Figure S49-56. Spacefill orientations and packing figures of free L, complex 1, 2a, 2b, 3, 4,	S28-		
	5 and 6	S31		

Table of Contents

Figure S1. ¹H NMR spectrum of receptor L at 25°C and interpretation of all hydrogen atoms of the receptor (600 MHz, DMSO-d₆) δ (ppm): 7.165-7.193 (m, 2H, Ar-H), 7.572-7.599 (m, 2H, Ar-H), 7.620 (s, 4H, Ar-H), 8.119 (s, 2H, Ar-H), 8.319 (s, 2H, NH_a), 9.811 (s, 2H, NH_b).

Figure S2. ¹³C NMR spectrum of receptor L at 25°C (150 MHz, DMSO-d₆) δ (ppm): 113.13 (×1C, Ar-C), 117.89 (×1C, Ar-C), 122.40(×2C, Ar-C), 124.21 (×2C, Ar-C), 124.91 (×4C, Ar-C), 124.98 (×4C, Ar-C), 130.59 (×4C, Ar-C), 130.80 (×2C, Ar-C), 141.93 (×2C, Ar), 153.15 (×2C, -C=O).

Figure S3. ESI-Mass spectrum of receptor L. ESI-MS: m/z 619.0944 [L+H].

Figure S4. FT-IR spectrum of receptor L_1 recorded in KBr pellet at 25°C: 3327 cm⁻¹ vs(N–H), 3138 cm⁻¹ vs(C-H), 1670 cm⁻¹ vs(C=O), 1257 cm⁻¹ vs(C-F).

Figure S5. 2D-NOESY NMR spectra of L in DMSO-d6 at 298 K

Figure S6. ¹H-NMR spectrum of complex **1** in DMSO-d₆ at 25°C, (600 MHz, DMSO-d₆) δ (ppm): 0.914-0.939 (t, 12H, ~7.8 Hz, TBA-CH₃), 1.269-1.330 (m, 8H, TBA-CH₂), 1.529-1.581 (m, 8H, TBA-CH₂), 3.136-3.165 (t, 8H, ~ 8.4 Hz, N⁺-TBA-CH₂), 7.156-7.184 (m, 2H, Ar-H), 7.599-7.627 (m, 2H, Ar-H), 7.596 (s, 4H, Ar-H), 8.114 (s, 2H, Ar-H), 10.685 (s, 2H, NH_a), 11.788 (s, 2H, NH_b).

Figure S7. FT-IR spectrum of complex 1 recorded in KBr pellet at 25°C: 3476 cm⁻¹ vs(O–H), 3368 cm⁻¹ vs(N–H) 3028 cm⁻¹ vs (C-H), 2863 cm⁻¹ vs(C-H), 1674 cm⁻¹ vs(C=O), 1268 cm⁻¹ vs(C-F).

Figure S8. Powder X-ray diffraction: simulated pattern from the single-crystal X-ray of complex **1** (blue), experimental pattern from the crystalline solid of complex **1** (black).

Figure S9. 2D-NOESY NMR spectra of complex 1 in DMSO-d₆ at 298 K.

Figure S10. Thermo gravimetric (TGA) and Diffrential scanning calorimetry (DSC) curve of only hydrated-fluoride complex **1** obtained at a heating rate of 10° C/min in N₂ atmosphere.

Figure S11. ¹H-NMR spectrum of complex **2a** in DMSO-d₆ at 25°C, (600 MHz, DMSO-d₆) δ (ppm): 0.914-0.938 (t, 12H, ~7.2 Hz, TBA-CH₃), 1.270-1.331 (m, 8H, TBA-CH₂), 1.533-1.586 (m, 8H, TBA-CH₂), 3.144-3.172 (t, 8H, ~ 8.4 Hz, N⁺-TBA-CH₂), 7.154-7.183 (m, 2H, Ar-H), 7.596-7.625 (m, 2H, Ar-H), 7.623 (s, 4H, Ar-H), 8.128 (s, 2H, Ar-H), 8.636 (s, 2H, NH_a), 10.246 (s, 2H, NH_b).

Figure S12. FT-IR spectrum of complex **2a** recorded in KBr pellet at 25°C: 3354 cm⁻¹ vs(N–H) 3024 cm⁻¹ vs (C-H), 2850 cm⁻¹ vs(C-H), 1668 cm⁻¹ vs(C=O), 1256 cm⁻¹ vs(C-F).

Figure S13. Powder X-ray diffraction: simulated pattern from the single-crystal X-ray of complex **2a** (blue), experimental pattern from the crystalline solid of complex **2a** (black).

Figure S14. 2D-NOESY NMR spectra of complex 2a in DMSO-d₆ at 298 K.

Figure S15. ¹H-NMR spectrum of complex **2b** in DMSO-d₆ at 25°C, (600 MHz, DMSO-d₆) δ (ppm): 1.141-1.165 (t, 12H, ~7.2 Hz, TEA-CH₃), 3.181-3.217 (q, 8H, ~7.2 Hz, N⁺-TEA-CH₂), 7.135-7.162 (m, 2H, Ar-H), 7.614-7.644 (m, 2H, Ar-H), 7.615 (s, 4H, Ar-H), 8.112 (s, 2H, Ar-H), 8.355 (s, 2H, NH_a), 10.218 (s, 2H, NH_b).

Figure S16. Powder X-ray diffraction: simulated pattern from the single-crystal X-ray of complex **2b** (blue), experimental pattern from the crystalline solid of complex **2b** (black).

Figure S17. 2D-NOESY NMR spectra of complex 2b in DMSO-d₆ at 298 K.

Figure S18. ¹H-NMR spectrum of complex **3** in DMSO-d₆ at 25°C, (600 MHz, DMSO-d₆) δ (ppm): 0.917-0.942 (t, 12H, ~7.8 Hz, TBA-CH₃), 1.273-1.334 (m, 8H, TBA-CH₂), 1.538-1.589 (m, 8H, TBA-CH₂), 3.148-3.176 (t, 8H, ~ 8.4 Hz, N⁺-TBA-CH₂), 7.154-7.182 (m, 2H, Ar-H), 7.585-7.613 (m, 2H, Ar-H), 7.613 (s, 4H, Ar-H), 8.121 (s, 2H, Ar-H), 8.121 (s, 2H, NH_a), 9.920 (s, 2H, NH_b).

Figure S19. FT-IR spectrum of complex **3** recorded in KBr pellet at 25°C: 3350 cm⁻¹ vs(N–H) 3031 cm⁻¹ vs (C-H), 2853 cm⁻¹ vs(C-H), 1670 cm⁻¹ vs(C=O), 1244 cm⁻¹ vs(C-F).

Figure S20. Powder X-ray diffraction: simulated pattern from the single-crystal X-ray of complex **3** (blue), experimental pattern from the crystalline solid of complex **3** (black).

Figure S21. 2D-NOESY NMR spectra of complex 3 in DMSO-d₆ at 298 K.

Figure S22. ¹H-NMR spectrum of complex **4** in DMSO-d₆ at 25°C, (400 MHz, DMSO-d₆) δ (ppm): 0.918-0.942 (t, 12H, ~7.8 Hz, TBA-CH₃), 1.275-1.336 (m, 8H, TBA-CH₂), 1.542-1.594 (m, 8H, TBA-CH₂), 3.158-3.186 (t, 8H, ~ 8.4 Hz, N⁺-TBA-CH₂), 7.149-7.177 (m, 2H, Ar-H), 7.593 (s, 4H, Ar-H), 7.595-7.622 (m, 2H, Ar-H), 8.111 (s, 2H, Ar-H), 8.427 (s, 2H, NH_a), 9.911 (s, 2H, NH_b).

Figure S23. FT-IR spectrum of complex **4** recorded in KBr pellet at 25°C: 3338 cm⁻¹ vs(C–H) 3034 cm⁻¹ vs (C-H), 2858 cm⁻¹ vs(C-H), 1677 cm⁻¹ vs(C=O), 1237 cm⁻¹ vs(C-F).

Figure S24. Powder X-ray diffraction: simulated pattern from the single-crystal X-ray of complex **4** (blue), experimental pattern from the crystalline solid of complex **4** (black).

Figure S25. 2D-NOESY NMR spectra of complex 4 in DMSO-d₆ at 298 K.

Figure S26. ¹H-NMR spectrum of complex **5** in DMSO-d₆ at 25°C, (600 MHz, DMSO-d₆) δ (ppm): 0.912-0.937 (t, 24H, ~7.2 Hz, TBA-CH₃), 1.267-1.328 (m, 16H, TBA-CH₂), 1.527-1.580 (m, 16H, TBA-CH₂), 3.135-3.163 (t, 16H, ~ 8.4 Hz, N⁺-TBA-CH₂), 7.158-7.187 (m, 2H, Ar-H), 7.602-7.629 (m, 2H, Ar-H), 7.599 (s, 4H, Ar-H), 8.121 (s, 2H, Ar-H), 10.558 (s, 2H, NH_a), 11.699 (s, 2H, NH_b).

Figure S27. ¹³C-NMR spectrum of complex **5** in DMSO-d₆ at 25°C, (150 MHz, DMSO-d₆) δ (ppm): 13.31 (×8C, TBA-CH₃), 19.11 (×8C, TBA-CH₂), 23.02 (×8C, TBA-CH₂), 57.58 (×8C, TBA-N⁺CH₂), 113.32 (×1C, Ar-C), 117.79 (×1C, Ar-C), 122.35 (×2C, Ar-C), 124.22 (×2C, Ar-C), 124.89 (×4C, Ar-C), 124.94(×4C, Ar-C), 130.61 (×4C, Ar-C), 130.89 (×2C, Ar-C), 141.90 (×2C, Ar), 155.45 (×2C, -C=O), 171.56 (×1C, Carbonate-C=O).

Figure S28. FT-IR spectrum of complex **5** recorded in KBr pellet at 25°C: IR spectra (KBr pellet): 3382 cm⁻¹ vs(N–H), 3044 cm⁻¹ vs (C-H), 2862 cm⁻¹ vs(C-H), 1665 cm⁻¹ vs(C=O), 1245 cm⁻¹ vs(C-F).

Figure S29. Powder X-ray diffraction: simulated pattern from the single-crystal X-ray of complex **5** (blue), experimental pattern from the crystalline solid of complex **5** (black).

Figure S30. 2D-NOESY NMR spectra of complex 5 in DMSO-d₆ at 298 K.

Figure S31. ¹H-NMR spectrum of complex **6** in DMSO-d₆ at 25°C, (600 MHz, DMSO-d₆) δ (ppm): 0.912-0.936 (t, 24H, ~7.2 Hz, TBA-CH₃), 1.267-1.329 (m, 16H, TBA-CH₂), 1.530-1.583 (m, 16H, TBA-CH₂), 3.141-3.169 (t, 16H, ~ 8.4 Hz, N⁺-TBA-CH₂), 7.041-7.069 (m, 2H, Ar–H), 7.426 (s, 4H, Ar-H), 7.816-7.844 (m, 2H, Ar–H), 8.119 (s, 2H, Ar–H), 9.651 (s, 2H, NH_a), 10.945 (s, 2H, NH_b).

Figure S32. FT-IR spectrum of complex **6** recorded in KBr pellet at 25°C: 3387 cm⁻¹ vs(N–H), 3052 cm⁻¹ vs (C-H), 2857 cm⁻¹ vs(C-H), 1678 cm⁻¹ vs(C=O), 1238 cm⁻¹ vs(C-F).

Figure S33. Powder X-ray diffraction: simulated pattern from the single-crystal X-ray of complex **6** (blue), experimental pattern from the crystalline solid of complex **6** (black).

Figure S34. 2D-NOESY NMR spectra of complex 6 in DMSO-d₆ at 298 K.

Figure S35. 2D-NOESY NMR spectra of complex **6** in presence of excess n-TBASO₄ salt in DMSOd₆ at 298 K.

Figure S36. Expanded partial ¹H-NMR spectra of L upon titration with *n*-TBAF in DMSO-d₆. Disappearance and broadening of urea –NH peaks followed by followed by generation of HF_2 - peak.

Figure S37. Expanded partial ¹H-NMR spectra of L upon titration with *n*-TBACl in DMSO-d₆.

Figure S38. Change in chemical shift of -NH resonances of L (10 mM) with increasing conc. of standard Cl⁻ solution (50 mM) in DMSO-d₆ at 298 K and the corresponding Job's plot.

Figure S39. Expanded partial ¹H NMR spectra of L upon titration with *n*-TBABr in DMSO-d₆ and very negligible shift of urea –NH signals.

Figure S40. Expanded partial ¹H NMR spectra of L upon titration with *n*-TBAI in DMSO-d₆ and very negligible shift of urea -NH signals.

Figure S41. Expanded partial ¹H NMR spectra of L upon titration with (*n*-TBA)₂SO₄ in DMSO-d₆.

Figure S42. Change in chemical shift of -NH resonances of L (10 mM) with increasing conc. of standard SO₄²⁻ solution (50 mM) in DMSO-d₆ at 298 K and the corresponding Job's plot.

Figure S43. Expanded partial ¹H NMR spectra of L upon titration with *n*-TBAOCOCH₃ in DMSO-d₆.

Figure S44. Change in chemical shift of -NH resonances of L (10 mM) with increasing conc. of standard CH₃COO⁻ solution (50 mM) in DMSO-d₆ at 298 K and the corresponding Job's plot.

Figure S45. Expanded partial ¹H NMR spectra of L upon titration with *n*-TBAH₂PO₄ in DMSO-d₆.

Figure S46. Change in chemical shift of -NH resonances of L (10 mM) with increasing conc. of standard H₂PO₄- solution (50 mM) in DMSO-d₆ at 298 K and the corresponding Job's plot.

Figure S47. Expanded partial ¹H-NMR spectra of L upon titration with n-TEAHCO₃ in DMSO-d₆. Disappearance and broadening of urea –NH peaks due to deprotonation.

Complex	D-H…A	<i>d</i> (D…H)∕	<i>d</i> (H…A)∕	<i>d</i> (D…A)/Å	<d-h…a th="" °<=""><th>Symmetry</th><th></th></d-h…a>	Symmetry	
		Å	Å			codes	
L	N1-H1N…O3	0.86	2.03	2.842(4)	157	1-x,1-y,1-z	
	N2-H2N…O3	0.86	2.15	2.947(5)	154	1-x,1-y,1-z	
	N3-H3N…O4	0.86	2.31	3.034(4)	143	1+x,y,z	
	N4-H4N…O4	0.86	1.95	2.790(5)	164	1+x,y,z	
	C25-H25B…O1	0.96	2.57	3.443(7)	152	x,-1+y,z	
1	N1-H1N…F13	0.86	1.91	2.760(6)	168	-x,1-y,1-z	
	N2-H2N…O3	0.86	2.05	2.900(6)	168	-x,1-y,1-z	
	N3-H3N…O3	0.86	2.53	3.290(7)	148	-x,1-y,1-z	
	N4-H4NA…F13	0.86	1.85	2.665(8)	156	x,y,z	
	N4-H4NB…F13	0.86	1.88	2.665(8)	152	x,y,z	
	O3-H3OA…F13	0.85	1.89	2.652(6)	148	x,y,z	
	C33-H33B…F11B	0.97	2.52	3.485 (15)	178	x,3/2-y,-1/2+z	
	C35-H35A…O2	0.97	2.50	3.428(11)	145	-x,-1/2+y,1/2-z	
	C37-H37B…O3	0.97	2.43	3.360(8)	161	x,y,z	
2a	N1-H1N…Cl1	0.86	2.63	3.268(3)	132	x,y,z	

Table S1. Hydrogen bonding distances (Å) and Bond angles (°) in the complexes (1a, 1b, 1c, 2a, 2b and 2c):

	N2-H2N…Cl1	0.86	2.40	3.208(3)	157	1-x,1-y,-z
	N3-H3N…Cl1	0.86	2.62	3.432(3)	157	x,y,z
	N4-H4N…Cl1	0.86	2.35	3.201(3)	170	X,V,Z
	C25-H25A…O1	0.97	2.53	3.244(5)	130	x,1/2-y,1/2+z
	C29-H29B…O1	0.97	2.48	3.245(5)	136	x,1/2-y, 1/2+z
2b	N1-H1N…Cl1	0.86	2.71	3.304(3)	127	x,y,z
	N2-H2N…Cl1	0.86	2.40	3.251(4)	169	-x,1-y,1-z
	N3-H3N…Cl1	0.86	2.71	3.288(4)	151	x,y,z
	N4-H4N…Cl1	0.86	2.38	3.233(4)	172	x,y,z
3	N1-H1N…Br1	0.86	2.51	3.362(5)	171	x,y,z
	N2-H2N…Br1	0.86	2.77	3.588(5)	158	x,y,z
	N3-H3N…Br1	0.86	2.55	3.326(5)	150	-x,1-y,1-z
	N4-H4N…Br1	0.86	2.76	3.380(5)	131	x,y,z
	C29-H29A…O2	0.97	2.55	3.360(9)	141	x,1/2-y,-1/2+z
	C37-H37A…O2	0.97	2.53	3.339(9)	140	x,1/2-y,-1/2+z
	N1-H1N1	በ ዩፍ	2 02	3 555(17)	121	V \/ 7
4	N2-H2N11	0.80	2.55	3.555(14)	128	^,y,4 _y 1_v 1_7
	N3-H3N11	0.80	2.05	3.317(12)	158	∧,⊥ ⁻ ¥,⊥ ⁻ ∠ V \/ 7
	N/_H/N1	0.80	2.76	3.607(12)	170	Λ, y, Z
	C22_H22BO1	0.80	2.70	2 10(2)	1/2	^,γ,2 γ 2 /2 _{-1 -} 1 /2 ₊₇
	035-1135001	0.97	2.57	5.40 (2)	145	x,3/2-y,-1/2+2
	N1-H1N…O3	0.86	1.87	2.686(4)	158	x,y,z
5	N2-H2N…O4	0.86	2.27	3.051(5)	151	x,y,z
	N3-H3N…O4	0.86	1.87	2.689(5)	159	x,y,z
	N4-H4N…O4	0.86	2.21	2.943(6)	142	x,y,z
	N4-H4N…O4	0.86	2.53	3.357(5)	162	3/2-x,1/2-y,z
	C33-H61A…O1	0.97	2.48	3.387(5)	156	-1+x,y,z
	C35-H63B…O1	0.97	2.56	3.450(5)	152	-1+x,y,z
		0 %	2 01	2 84/01	150	V V 7
		0.00	<u>2.01</u> 2.10	2.04(J) 2 06(Q)	151	Χ,Υ,Ζ
		0.00	2.10 7 1 Q	2.30(0)	1/0	Λ,Υ,Ζ
		0.00	2.10 2.17	2.33(0)	147	Χ,Υ,Ζ
	N5-H5NOA	0.00	2.07 1.00	2.0/(3) 2.82/10)	154	Χ,Υ,Ζ
		0.87	1.99	2.03(10)	102	Χ,Υ,Ζ
			1.97	2.83(1U)	1/3	Χ,Υ,Ζ
			2.12	2.94(9)	100	x,γ,z
		0.86	1.91	2.76(9)	109	Χ,Υ,Ζ
~		0.92	2.52	3.44(14)	1/4	1-X,-Y,1-Z
b	C28-H28BO3	0.98	2.55	3.47(12)	158	х,у,z
		nu/	750	<u>≺</u> <u>4</u> ≺(16)	161	X V 7
		0.57	2.50	2.72(10)	170	<i>Λ,γ,</i> ζ

Figure S48. The scatter plot of D–H···A angle vs. H···A distance of the hydrogen bonds in the (a) free receptor L (b) complex 1, (c) complex 2a and 2b, (d) complex 3, (e) complex 4, (f) complex 5 and (g) complex 6.

Scheme S49: Partial X-ray structures in space-fill model of all anion complexes depicting systematic and consistent anion binding uniformity of *meta*-disubstituted receptors toward spherical fluoride(hydrated), chloride, bromide, iodide, planar carbonate and tetrahedral sulphate anions.

Figure S50. X-ray structures of DMSO solvated free receptor L depicting packing motif as viewed down from crystallographic *b* axis by symmetry equivalence.

Figure S51. X-ray structures depicting (a) packing motif of hydrated receptor-fluoride (n-TBA countercation) complex 1 as viewed down from crystallographic b axis by symmetry equivalence and (b) packing motif along the crystallographic c axis by symmetry equivalence.

Figure S52. X-ray structures depicting (a) packing motif of 2:2 L-Chloride (*n*-TBA countercation) complex **2a** as viewed down from crystallographic *b* axis by symmetry equivalence and (b) packing motif of 2:2 L-Cl (TEA countercation) complex **2b** as viewed down from crystallographic *b* axis by symmetry equivalence.

Figure S53. X-ray structures depicting packing motif of 2:2 L-bromide (n-TBA countercation) complex 3 as viewed down from crystallographic b axis by symmetry equivalence.

Figure S54. X-ray structures depicting packing motif of 2:2 L-iodide (n-TBA countercation) complex 4 as viewed down from crystallographic b axis by symmetry equivalence.

Figure S55. X-ray structures depicting packing motif of 2:1 L-carbonate (n-TBA countercation) complex 5 as viewed down from crystallographic b axis.

Figure S56. X-ray structures depicting packing motif of 2:1 L-sulphate (*n*-TBA countercation) complex **6** as viewed down from crystallographic *b* axis by symmetry equivalence.