Synthesis and characterization of 1'-(diphenylphosphino)-1-isocyanoferrocene, an organometallic ligand combining two different soft donor moieties, and its Group 11 metal complexes

Karel Škoch, Ivana Císařová, Jiří Schulz, Ulrich Siemeling, and Petr Štěpnička*

Supporting Information

Contents

Crystallographic data and refinement parameters (Table S1)	S-2
Additional structural drawings	S-6
Computed energetic parameters (Table S2)	S-15
Copies of the NMR spectra	S-16

Compound	1	2	4S
Formula	C ₂₃ H ₁₈ FeNP	C ₂₂ H ₂₀ FeNP	C ₂₂ H ₁₈ FeN ₃ PS
Μ	395.20	385.21	443.27
Crystal system	monoclinic	triclinic	monoclinic
Space group	<i>P</i> 2 ₁ / <i>c</i> (no. 14)	<i>P</i> -1 (no. 2)	<i>P</i> 2 ₁ / <i>n</i> (no. 14)
a/Å	8.9430(2)	8.6644(4)	13.0004(3)
b/Å	16.7677(4)	10.1933(4)	8.9356(2)
c/Å	12.9894(3)	10.9689(5)	34.3940(8)
α/°	90	103.168(1)	90
β/°	108.1841(9)	102.967(2)	98.0205(8)
γ/°	90	101.417(1)	90
V/Å ³	1850.53(7)	887.01(7)	3956.3(2)
Ζ	4	2	8
μ(Mo Kα)/mm ⁻¹	0.907	0.944	0.962
<i>F</i> (000)	816	400	1824
Diffrns collected	28019	18965	67506
Independent diffrns	4258	4078	9086
Observed ^b diffrns	3581	3748	8528
$R_{\rm int}c/\%$	3.44	2.42	1.94
No. of parameters	235	226	505
<i>R^c</i> obsd diffrns/%	2.95	2.39	4.14
<i>R, wR^c</i> all data/%	3.85, 7.63	2.77, 5.81	4.41, 10.25
Δρ/e Å-3	0.33, -0.26	0.27, -0.31	1.88, -0.95
CCDC entry	1558580	1558581	1558582

Table S1. Summary of crystallographic data and structure refinement parameters.^a

^{*a*} Common details: T = 150(2) K. ^{*b*} Diffractions with $I > 2\sigma(I)$. ^{*c*} Definitions: $R_{int} = \Sigma |F_o^2 - F_o^2(\text{mean})| / \Sigma F_o^2$, where $F_o^2(\text{mean})$ is the average intensity of symmetry-equivalent diffractions. $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, $wR = [\{\Sigma |w| |F_o^2 - F_c^2|^2\} / \Sigma |wF_o^2|^2]^{1/2}$.

Table S1 continued

Compound	4B	5	6
Formula	C ₂₂ H ₂₁ BFeN ₃ P	C ₂₃ H ₂₀ FeNOP	C ₂₃ H ₁₈ AgClFeP
Μ	425.05	413.22	538.52
Crystal system	monoclinic	monoclinic	triclinic
Space group	<i>P</i> 2 ₁ / <i>c</i> (no. 14)	<i>P</i> 2 ₁ / <i>c</i> (no. 14)	<i>P</i> -1 (no. 2)
a/Å	9.9966(2)	7.7210(3)	8.3719(2)
b/Å	15.9714(4)	26.8385(8)	9.6949(3)
c/Å	12.5443(3)	9.5519(3)	13.6401(4)
α/°	90	90	110.216(1)
β/°	92.8551(8)	99.412(1)	103.260(1)
γ/°	90	90	95.591(1)
V/Å ³	2000.33(8)	1952.7(1)	992.10(5)
Ζ	4	4	2
μ(Mo Kα)/mm ⁻¹	0.846	0.866	1.942
<i>F</i> (000)	880	856	536
Diffrns collected	13324	36002	10290
Independent diffrns	4583	4458	4556
Observed ^c diffrns	4147	4152	3960
$R_{\rm int}d/\%$	1.69	2.21	1.92
No. of parameters	253	244	257
<i>R^d</i> obsd diffrns/%	3.41	2.50	2.66
<i>R, wR^d</i> all data/%	3.79, 9.96	2.75, 6.17	3.29, 6.94
Δρ/e Å- ³	0.70, -0.59	0.28, -0.30	0.66, -0.51
CCDC entry	1558583	1558584	1558585

Compound	7	8·3Me ₂ CO	9
Formula	$C_{52}H_{48}Ag_2F_{12}Fe_2N_2O_2P_2Sb_2$	$C_{101}H_{90}Ag_2F_{12}Fe_4N_4O_3P_4Sb_2$	C ₂₃ H ₁₈ AuClFeP
Μ	1593.80	2442.29	627.62
Crystal system	monoclinic	monoclinic	monoclinic
Space group	<i>P</i> 2 ₁ / <i>c</i> (no. 14)	<i>C</i> 2/ <i>c</i> (no. 15)	<i>P</i> 2 ₁ / <i>c</i> (no. 14)
a/Å	8.7552(3)	29.4021(5)	8.4598(1)
b/Å	14.2448(5)	21.8753(4)	18.9243(3)
c/Å	22.3852(7)	18.7554(3)	12.8116(2)
α/°	90	90	90
β/°	98.237(1)	127.1702(5)	94.3304(6)
γ/°	90	90	90
V/Å ³	2763.0(2)	9612.4(3)	2045.23(5)
Ζ	2	4	4
μ(Mo Kα)/mm ⁻¹	2.310	1.680	8.092
<i>F</i> (000)	1552	4864	1200
Diffrns collected	48377	38105	16559
Independent diffrns	6354	11055	4692
Observed ^c diffrns	5398	9073	4097
$R_{\rm int}^d/\%$	3.59	2.41	2.80
No. of parameters	345	600	257
<i>R^d</i> obsd diffrns/%	3.77	3.07	1.93
<i>R, wR^d</i> all data/%	4.59, 9.82	4.14, 7.83	2.58, 3.99
Δρ/e Å-3	2.24, -2.43	1.79, –1.70	0.78, -0.41
CCDC entry	1558586	1558587	1558588

Table S1 continued

Table S1 continued

Compound	10	11a ·2Me ₂ CO
Formula	$C_{23}H_{18}Au_2Cl_2FeNP$	$C_{52}H_{48}Au_2F_{12}Fe_2N_2O_2P_2Sb_2$
Μ	860.04	1772.00
Crystal system	triclinic	monoclinic
Space group	<i>P</i> -1 (no. 2)	<i>P</i> 2 ₁ / <i>c</i> (no. 14)
a/Å	7.7090(2)	8.8480(3)
b/Å	10.0529(3)	14.2781(9)
c/Å	15.6084(4)	22.257(1)
α/°	90.179(1)	90
β/°	100.158(1)	98.795(2)
γ/°	107.216(1)	90
V/Å ³	1135.34(5)	2778.7(2)
Ζ	2	2
μ(Mo Kα)/mm ⁻¹	2.516	6.866
<i>F</i> (000)	792	1680
Diffrns collected	15177	21495
Independent diffrns	5212	6333
Observed ^c diffrns	4531	5599
$R_{\rm int}^d$ /%	2.47	2.82
No. of parameters	271	345
<i>R</i> ^{<i>d</i>} obsd diffrns/%	2.14	2.58
<i>R, wR^d</i> all data/%	2.79, 4.48	3.20, 5.39
$\Delta \rho / e \text{ Å}^{-3}$	1.03, -0.93	1.36, -1.34
CCDC entry	1558589	1558590

Additional structural diagrams

Figure S1. PLATON plot of the molecular structure of 1 showing displacement ellipsoids at the 30% probability level.

Figure S2. PLATON plot of the molecular structure of **2** showing displacement ellipsoids at the 30% probability level.

Figure S3. PLATON plot of the two crystallographically independent molecules of **4S** showing displacement ellipsoids at the 30% probability level.

Figure S4. Overlap of the two crystallographically independent molecules of 4S.

Figure S5. PLATON plot of the molecular structure of **4B** showing displacement ellipsoids at the 30% probability level.

Figure S6. PLATON plot of the molecular structure of 5 showing displacement ellipsoids at the 30% probability level.

Figure S7. PLATON plot of the infinite assembly in the structure of **6** with displacement ellipsoids at the 30% probability level. Hydrogen atoms are omitted for clarity.

Figure S8. PLATON plot of the molecular structure of **7** showing displacement ellipsoids at the 30% probability level.

Figure S9. PLATON plot of the complex cation in the structure of **8**·3Me₂CO showing displacement ellipsoids at the 30% probability level.

Figure S10. PLATON plot of the structure of **9** showing displacement ellipsoids at the 30% probability level.

Figure S11. PLATON plot of the molecular structure of **10** showing displacement ellipsoids at the 30% probability level.

Figure S12. Possible Au…Au contacts in the structure of 10.

Figure S13. PLATON plot of the molecular structure of **11a**·2Me₂CO showing displacement ellipsoids at the 30% probability level.

Table S2. S	Summary of	computed	energetic	parameters ^a
-------------	------------	----------	-----------	--------------------------------

Compound	E (Hartree)	ZPE (Hartree)	G (kcal mol ⁻¹)
$[Au_2(m(P,N)-D)_2]^{2+}$	-3083.470112	0.693103	-3082.867457
[Au D] ¹⁺	-1541.701959	0.345266	-1541.412095
$[Au_2(m(P,C)-11)_2]^{2+}$	-3083.435496	0.69292	-3082.830992
[Au(11)] ¹⁺	-1541.675001	0.345159	-1541.384068

^a Gaussian energetic parameters calculated at the PBE0/ccPVDZ:sdd(Fe,Au) level of theory.

Copies of the NMR spectra (newly prepared compounds only)

Figure S14. ¹H NMR spectrum of **1** (CDCl₃).

Figure S15. ¹³C{¹H} NMR spectrum of **1** (CDCl₃).

Figure S16. ³¹P{¹H} NMR spectrum of 1 (CDCl₃).

Figure S17. 1 H NMR spectrum of 2B (CDCl₃).

Figure S18. $^{13}C{^{1}H}$ NMR spectrum of 2B (CDCl₃).

Figure S19. ³¹P{¹H} NMR spectrum of **2B** (CDCl₃; * = system peak; ** = **2**).

Figure S20. ¹H NMR spectrum of 3B (CDCl₃).

Figure S21. ${}^{13}C{}^{1}H$ NMR spectrum of 3B (CDCl₃).

Figure S22. ³¹P{¹H} NMR spectrum of **3B** (CDCl₃).

Figure S23. ¹H NMR spectrum of **4S** (CDCl₃).

Figure S24. $^{13}C{^{1}H}$ NMR spectrum of 4S (CDCl₃).

Figure S25. ${}^{31}P{}^{1}H$ NMR spectrum of 4S (CDCl₃).

Figure S26. ¹H NMR spectrum of 4B (CDCl₃).

Figure S27. ${}^{13}C{}^{1}H$ NMR spectrum of 4B (CDCl₃).

Figure S28. ${}^{31}P{}^{1}H$ NMR spectrum of 4B (CDCl₃).

Figure S29. ¹H NMR spectrum of **5** (CDCl₃).

Figure S30. ¹³C{¹H} NMR spectrum of **5** (CDCl₃; * = system peak).

Figure S31. ³¹P{¹H} NMR spectrum of **5** (CDCl₃; * = system peak).

Figure S33. $^{13}C{^{1}H}$ NMR spectrum of 5B (CDCl₃).

0 f1 (ppm)

5

-5

-10

-15

-20

-25

-30

-35

-40

-45

Figure S34. ³¹P{¹H} NMR spectrum of **5B** (CDCl₃).

20

15

10

50

45

40

35

30

25

Figure S35. In situ ¹H NMR spectrum of **7** (acetone-d₆).

Figure S37. In situ ¹H NMR spectrum of **8** (acetone-d₆).

Figure S39. ¹H NMR spectrum of **9** (acetone-d₆).

Figure S41. ¹H NMR spectrum of **11a** (acetone-d₆).

Figure S42. ³¹P{¹H} NMR spectrum of **11a** (acetone-d₆).

Figure S43. ¹H NMR spectrum of **11b** (CDCl₃).

Figure S44. ³¹P{¹H} NMR spectrum of **11b** (CDCl₃).

Figure S45. ¹⁹F NMR spectrum of **11b** (CDCl₃).