Electronic Supplementary Information (ESI) for: H₄octapa: Synthesis, Solution Equilibria and Complexes with Useful Radiopharmaceutical Metal Ions

María de Guadalupe Jaraquemada-Peláez, Xiaozhu Wang, Thomas J. Clough, Yang Cao, Neha Choudhary, Kirsten Emler, Brian O. Patrick and Chris Orvig^{*}

Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada

Table S1. ¹H NMR chemical shifts δ (ppm) and variations of chemical shifts $\Delta\delta$ (ppm) of a set of solutions at the same ligand concentration [H₄octapa] = 3.8 x 10⁻³ M and different acidities, at 25 °C, I = 0.16 M NaCl.

H₄octapa

H ⁰ or pH	H10	H8	H7	Н3	H4	Н5
-0.11	3.46	3.87	4.44	7.98	8.02	7.64
0.08	3.51	3.92	4.49	8.04	8.08	7.7
0.33	3.59	3.98	4.57	8.13	8.18	7.79
0.69	3.6	3.98	4.58	8.14	8.19	7.8
0.83	3.6	3.98	4.58	8.15	8.21	7.81
0.92	3.62	3.99	4.6	8.17	8.23	7.84
1.02	3.6	3.97	4.58	8.16	8.22	7.82
1.13	3.6	3.96	4.58	8.17	8.23	7.83
1.29	3.59	3.94	4.57	8.17	8.24	7.84
1.45	3.58	3.92	4.57	8.17	8.24	7.84
1.62	3.58	3.9	4.56	8.16	8.24	7.84
1.81	3.57	3.88	4.55	8.17	8.25	7.85
2.00	3.56	3.86	4.55	8.16	8.25	7.85

H ⁰ or pH	$\Delta \delta_{\rm H10}$	$\Delta \delta_{H8}$	$\Delta \delta_{\rm H7}$	$\Delta \delta_{\rm H3}$	$\Delta \delta_{\rm H4}$	$\Delta \delta_{H5}$
0.08	0.05	0.05	0.05	0.06	0.06	0.06
0.33	0.08	0.06	0.08	0.09	0.1	0.09
0.69	0.01	0	0.01	0.01	0.01	0.01
0.83	0	0	0	0.01	0.02	0.01
0.92	0.02	0.01	0.02	0.02	0.02	0.03
1.02	-0.02	-0.02	-0.02	-0.01	-0.01	-0.02
1.13	0	-0.01	0	0.01	0.01	0.01
1.29	-0.01	-0.02	-0.01	0	0.01	0.01
1.45	-0.01	-0.02	0	0	0	0
1.62	0	-0.02	-0.01	-0.01	0	0
1.81	-0.01	-0.02	-0.01	0.01	0.01	0.01
2.00	-0.01	-0.02	0	-0.01	0	0

Figure S1. Variation of the chemical shift δ (ppm) *vs.* Acidity of a set of solutions at the same ligand concentration [H₄octapa] = 3.8 x 10⁻³ M at 25 °C.

Figure S2. Representative spectra of the UV-Vis spectrophotometric titration of $[H_4 \text{octapa}] = 1.28 \times 10^{-4}$ M at 25 °C, path length = 1 cm.

Figure S3. Representative spectra of the Sm³⁺-H₄octapa system. a) In batch UV spectrophotometric experiments, $[H_4octapa] = [Sm]^{3+} = 1.51 \times 10^{-4} M$, path length = 1cm; b) and c) Combined potentiometric-spectrophotometric titrations, $[H_4octapa] = 5.56 \times 10^{-4} M$, $[Sm]^{3+} = 5.52 \times 10^{-4} M$, path length = 0.2 cm, at 25 °C and I = 0.16 M NaCl.

Figure S4. a) and b) Representative spectra of the in batch UV spectrophotometric experiments for the $Dy^{3+}-H_4octapa$ system, $[H_4octapa] = 1.38 \times 10^{-4} \text{ M}$, $[Dy]^{3+} = 1.37 \times 10^{-4} \text{ M}$, path length = 1 cm, at 25 °C and I = 0.16 M NaCl.

equilibrium reaction	ttha ⁶⁻		
$L + H + \leftrightarrows HL$	9.98(4)		
$\mathrm{HL} + \mathrm{H} + \leftrightarrows \mathrm{H}_2 \mathrm{L}$	9.21(3)	ноос	ttha ligand
$H_2L + H + \leftrightarrows H_3L$	6.14(3)	HOOC-/N	-000h
$H_3L + H + \leftrightarrows H_4L$	4.04(4)		СООН
$H_4L + H + \leftrightarrows H_5L$	2.94(5)	HOOC-	NСООН
$H_5L + H + \leftrightarrows H_6L$	2.10(3)		
$\log K_{M_p H_p L_r}$	Sm ³⁺	Dy ³⁺	Yb ³⁺
$\log K_{\rm ML}$	23.36(3)	23.37(2)	22.71(4)
$\log K_{ m MHL}$	4.44(3)	4.45(2)	4.70(3)
$\log K_{ m MH2L}$	2.45(4)	2.55(2)	2.76(3)
$\log K_{M2L}$	2.94(2)	3.21(1)	2.85(2)

Table S2. Protonation constants and stability constants of ttha⁶⁻ ligand and its complexes with Sm^{3+} , Dy^{3+} and Yb^{3+} metal ions at 25 °C and I = 0.16 M NaCl.

Scheme S1. Previously reported synthetic schemes for the H_4 octapa ligand. Route 1, from reference¹; route 2, from reference².

Figure S5. ¹H NMR (300 MHz, D₂O, 25 °C) spectrum of dimethyl-2,2'-(ethane-1,2-diylbis(azanediyl))diacetate (1)

Figure S6. ¹³C NMR (100 MHz, D₂O, 25 °C) spectrum of dimethyl-2,2'-(ethane-1,2-diylbis(azanediyl))-diacetate (1)

Figure S7. ¹H NMR (300 MHz, CDCl₃, 25 °C) spectrum of methyl 6-(hydroxymethyl)picolinate (2)

Figure S8. ¹H NMR (300 MHz, CDCl₃, 25 °C) spectrum of dimethyl 6,6'-((3,10-dioxo-2,11-dioxa-5,8-diazadodecane-5,8-diyl)bis(methylene))dipicolinate (**3**).

Figure S9. ¹H NMR (400 MHz, D2O, 25 °C) spectrum of H_4 octapa, N,N'-bis(6-carboxy-2-pyridylmethyl)ethylenediamine-N,N'-diacetic acid (4).

Figure S10. ^{13}C NMR (100 MHz, D2O, 25 °C) spectrum of H₄octapa, N,N'-bis(6-carboxy-2-pyridylmethyl)ethylenediamine-N,N'-diacetic acid, (4)

Figure S11. HR-ESI-MS spectrum of H₄octapa, N,N'-bis(6-carboxy-2-pyridylmethyl)ethylenediamine-N,N'-diacetic acid, (4)

Efement	al Composition	n Report	:		Dita	p		F	Page 1
Single M Tolerance Selected	lass Analysis e = 5.0 PPM / filters: None	DBE: n	nin = -1.5,	max = 50.	0	•		-7	ōm
Monoisotop 1148 formu Elements L C: 0-45	bic Mass, Even Ele Ila(e) evaluated wit Jsed: I: 0-75 N: 0-10	ctron lons th 5 result O: 0-10	s within limits Na: 0-1	s (all results	(up to 1000) fo	each m	ass)		
EH10143 282	(3.763) AM2 (Ar,1000	0.0,0.00,1.0	0); Cm (272:294	4)				т	OF MS ES+ 8.86e4
100	438.2716				44	7.1519	(m+t	UÐ	
%									
1	439.2769					448	.1582		
	440	.2785 44	1.2916 443	2435 445.2	402 446.7074		449.1	585 450.2725	451.2759
0 4,	438.0 440.	4 	442.0	444.0	446.0	44	8.0	450.0	452.0
Minimum: Maximum:		5.0	5.0	-1.5 50.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formul	La		
447.1519	447.1516 447.1529 447.1532 447.1505 447.1505	0.3 -1.0 -1.3 1.4 2.2	0.7 -2.2 -2.9 3.1 4.9	11.5 16.5 12.5 13.5 24.5	6.5 108.6 105.0 76.7 1773.6	C20 1 C21 1 C23 C19 C32	H23 N4 H19 N8 H24 N2 H20 N8 H19 N2	08 04 06 Na 04 Na 0	

Figure S12. IR (neat) spectrum of H_4 octapa, N,N'-bis(6-carboxy-2-pyridylmethyl)ethylenediamine-N,N'-diacetic acid, (4)

Figure S13. IR (neat) spectrum of Na[La(octapa)], (5)

Figure S14. ¹H NMR (300 MHz, D_2O , 25 °C) spectrum of Na[La(octapa)], (5)

Figure 15. ¹³C NMR (100 MHz, D₂O, 25°C) spectrum of Na[La(octapa)], (5)

Figure S16. a) HR-ESI-MS spectrum of Na[La(octapa)], (5). b) Experimental data for the peak m/z =581.0189 is shown at the top of the panel and compared with the data calculated for the $[C_{20}H_{18}N_4O_8^{139}La]$: 581.0188 (lower panel).

a)

581.0161

4.8

15.5

339.0

C16 H14 N10

06 139La

Elemental Composition Report Page 1 Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 80.0 Selected filters: None Monoisotopic Mass, Even Electron Ions 569 formula(e) evaluated with 4 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-40 H: 0-60 N: 0-10 O: 0-10 139La: 1-1 TC053 EH10101 639 (8.530) AM (Cen, 2, 80.00, HI, 5000.0, 0.00, 1.00); Cm (612:544) TOF MS ES-581 0189 4 5494 100-572,2179 X 573,2278 582.0322 574.2283 575.2302 577.2601 588.2223 589.2241 591.2178 583,0353 584,0287 569.0609 570.0703 580.040 0 0 572.0 574.0 576.0 578.0 0 584.0 586.0 568.0 570.0 580.0 582.0 -1.5 Minimum: Max imum: 5.0 5.0 80.0 Mass Calc. Mass mDa PPM DBE i-FIT Formula C20 H18 N4 O8 139La 581.0189 581.0188 0.2 14.5 94.6 0.1 -1.3 1.9 2.8 C21 H14 NB O4 139La C32 H14 N2 O 139La -2.2 77.2 581,0202 19.5 27.5 581.0170 3.3

Figure S17. a) HR-ESI-MS spectrum of Na[Sm(octapa)], (6). b) Experimental data for the peak m/z = 589.0271 is shown at the top of the panel and compared with the data calculated for the $[C_{20}H_{18}N_4O_8^{-147}Sm]^-$: 589.0274 (lower panel).

a)

Elemental Composition Report Page 1 Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 80.0 Selected filters: None Monoisotopic Mass. Even Electron lons 2526 formula(e) evaluated with 16 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-45 H: 0-75 N: 0-15 O: 0-15 147Sm: 0-1 TC041 EH10122 283 (3.777) AM (Cen, 2, 80.00, HI, 5000.0, 0.00, 1.00); Cm (278:288) TOF MS ES-994 100 596.0350 591.0314 589.0271 590.0278 X 92.0332 607.2656 95.039 597.0422 608.2675 586.0340 598.6968_{600.6946} 602.1312_{605.1855} լլվակորում այս որությունը գորան 7.5 600.0 602.5 605.0 (611.1935 582 6470 582.5 585.0 587.5 щ 0 595.0 592.5 697.6 607.5 590.0 Minimum: -1.5Max imum: 5.0 5.0 80.0 Mass Calc. Mass mDa PPM DBE i-FIT Formula -0.5 C20 H18 N4 O8 1475m 589.0274 -0.3 589.0271 14.5 0.8 391.4 6.6 C29 H9 N4 O11 C4 H18 N12 O13 147Sm 0.3 27.5 589.0268 0.5 589.0265 C42 H N6 589.0263 0.8 1.4 45.5 319.1 589.0281 589.0260 -1.0 1.1 -1.7 32.5 382.1 1.1 C30 C19 H5 N8 H22 O N8 07 012 147Sm H10 N14 O2 147Sm H14 N2 O 147Sm H14 NB O4 147Sm 589.0260 589.0255 1.1 1.6 1.9 2.7 20.5 $1.1 \\ 1.5$ C17 C32 -2.7 589.0287 -1.6 19.5 0.7 C21 1.7 2.9 399.0 C26 C28 H N14 05 589.0254 33.5 H13 015 589.0254 22.5 400.8 CB H22 N6 015 147Sm C41 H5 N2 04 C16 H14 N10 06 147Sm -2.1 4.8 589.0292 1.5 -3.6 589,0249 3.7 589.0247 2.4 4.1 15.5 1.5 589.0295 589.0300 -2.4 -2.9 -4.1 -4.9 37.5 19.5 373.0 448.7 C31 C18 H N12 O3 H9 N10 O14

b)

Figure S18. a) HR-ESI-MS spectrum of Na[Dy(octapa)], (7). b) Experimental data for the peak m/z = 603.0396 is shown at the top of the panel and compared with the data calculated for the $[C_{20}H_{18}N_4O_8^{161}Dy]^-$: 603.0394 (lower panel).

Page 1

a)

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 80.0 Selected filters: None

Monoisotopic Mass. Even Electron Ions 2540 formula(e) evaluated with 18 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-45 H: 0-75 N: 0-15 O: 0-15 161Dy: 0-1 TC097 EH10196 1431 (19.091) AM (Cen,2, 70.00, Ht,5000.0,0.00, 1.00); Cm (1431:1450) TOF MS ES-572.2179 1.64e4 100-606.0422 604.0397 603 039 % 573.2242 607.0493 574.2220 611.1987 610.0 588 2137 602 0622 508.1888 575.2259 590.2123 594,1806 581.0258 584.2080 80.0 585.0 0-590.0 595.0 600.0 580.0 570.0 575.0 605.0 Minimum: -1.55.0 5.0 80.0 Max imum: Mass Calc. Mass mDa PPM DBE i-FIT Formula 603.0396 603.0397 -0.1 -0.2 28.5 7583.1 C26 H7 N10 09 H18 N4 0.2 161Dy 3 161Dy 0.3 14.5 C20 603.0394 603.0386 9.1 6.9 08 C4 H18 N12 O1 C42 H7 N2 O4 013 603.0406 40.5 6315.1 -1.0 -1.7603.0407 603.0384 -1.1 -1.8 19.5 13.6 7731.2 C21 C25 H14 NB H11 N6 04 013 161Dy 161Dy 22 161Dy 603.0411 603.0381 -1.5 1.5 -2.5 22.5 7483.4 C29 C19 H15 H22 015 012 6.0 C17 C27 CB 603.0381 1.5 2.5 20.5 8.4 H10 N14 603.0411 603.0413 -1.5 -1.7 7434.7 -2.5 33.5 1.5 2.9 H22 N8 02 N2 0 C38 C32 H3 N8 H14 N2 H3 N6 6567.0 603.0379 1.7 2.8 41.5 161Dy 603.0376 27.5 49.5 603.0419 -2.3 45.5 6165.5 C43 -3.8 161Dy 603.0421 603.0424 -2.5 -4.1 24.5 19.9 7336.2 C22 C30 H10 N12 16 H11 N4 011 2.9 -3.0 6.6 H14 N10 H18 N10 N10 603.0367 4.8 15.5 C16 06 161Dy 603.0426 -5.0 6.5 C9 H18 011 161Dy

b)

Figure S19. a) HR-ESI-MS spectrum of Na[Yb(octapa)], (8). b) Experimental data for the peak m/z =613.0482 is shown at the top of the panel and compared with the data calculated for the $[C_{20}H_{18}N_4O_8^{171}Yb]$: 613.0488 (lower panel).

a)

613,0509

Elemental Composition Report Page 1 Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 80.0 Selected filters: None Monoisotopic Mass. Even Electron lons 2128 formula(e) evaluated with 11 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-40 H: 0-60 N: 0-10 O: 0-10 Na: 0-1 171Yb: 0-1 TC096 EH10198 977 (13.035) AM (Cen.2, 80.00, Ht 5000.0,0.00,1.00); Sm (Mn, 2x3.00); Cm (962:977) TOF MS ES-616 0470 669 100-614.0457 615.0464 607,2656 % 618.0475 613.0482 621,2442 617.0327 608 2555 604.0752 610.7495^{611.9645} 619.0419 619.7388 606.0902 609.2535 606.0 610.0 0 --- m/z 608.0 612.0 614.0 616.0 618.0 620.0 604.0 -1.5 Minimum: Max imum: 5.0 5.0 80.0 Mass Calc. Mass mDa PPM DBE i-FIT Formula 613.0482 613.0477 16.5 0.2 C19 H15 NR 0.5 0.8 04 Na 171Yb H18 N4 O8 H9 N8 O9 -0.6 0.2 08 171Yb 613.0488 -1.0 14.5 C20 C29 613,0492 29.5 613.0470 1.2 2.0 27.5 C32 H14 N2 0 171Yb 1.4 613.0468 613.0464 1.4 2.3 26.5 C27 C18 H10 H19 NB N4 09 08 Na Na 328.1 0.1 171Yb H14 NB 04 H14 N10 0 H9 N2 06 H19 N2 06 H10 N6 07 613.0501 613.0461 -1.9 2.1 -3.1 19.5 15.5 0.4 C21 C16 04 06 171Yb 171Yb 3.4 280.8 613.0461 2.1 3.4 37.5 C40 -2.2 -3.6 C23 C32 06 613.0504 0.4 Na 171Yb 15.5

30.5

Na

b)

Figure S20. Optimized structure of (a) the $[Dy(octapa)(H_2O)]$ ·2H₂O anion and (b) the $[Yb(octapa)(H_2O)]$ ·2H₂O with labels on selected atoms.

Figure S21. MEP mapping of (a) $[Dy(octapa)(H_2O)]^{-2}H_2O$ anion and (b) $[Yb(octapa)(H_2O)]^{-2}H_2O$ anion, where red = negative, blue = positive, representing a maximum potential of 0.200 au and a minimum of -0.200 au, mapped onto electron density isosurface of 0.002 Å⁻³. All hydrogen atoms have been omitted for clarity.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	62	0	-0.009587	0.142875	-0.223180
2	7	0	-2.705083	0.038663	-0.183724
3	7	0	2.674060	-0.160936	-0.301512
4	7	0	1.221872	-1.937135	1.225206
5	7	0	-1.302615	-2.304086	-0.430127
6	6	0	-5.487415	0.080224	-0.028391
7	6	0	4.751243	-1.218295	0.263020
8	6	0	3.352241	-1.200876	0.210195
9	6	0	2.517375	-2.374964	0.666826
10	6	0	0.294480	-3.091273	1.331146
11	6	0	1.418391	-1.338965	2.560321
12	6	0	4.752387	0.960817	-0.756530
13	6	0	3.359490	0.893579	-0.784192
14	6	0	2.504825	2.003833	-1.358958
15	6	0	5.459295	-0.120443	-0.227623
16	6	0	-4.778363	1.250692	-0.300581
17	6	0	-3.386678	1.185667	-0.369731
18	6	0	-2.551825	2.423890	-0.637956
19	6	0	-4.782454	-1.107750	0.168671
20	6	0	-3.385087	-1.088865	0.089497
21	6	0	-2.553995	-2.322790	0.352686
22	6	0	-0.396745	-3.394102	0.008888
23	6	0	-1.591030	-2.482403	-1.870447
24	1	0	-6.571369	0.089496	0.026443
25	1	0	5.267641	-2.074427	0.684240
26	1	0	2.315583	-3.006373	-0.205614
27	1	0	3.080037	-2.988903	1.385663
28	1	0	0.830062	-3.988483	1.676099
29	1	0	-0.446279	-2.850415	2.096459
30		0	2.270571	-0.651987	2.512609
31		0	1.650554	-2.093904	3.325459
32	1	0	5.24/495	1.843520	-1.143592
33	1	0	6.544043	-0.108418	-0.192589
34	1	0	-5.267040	2.204217	-0.461145
35	1	0	-5.300378	-2.037730	0.3/830/
36	1	U	-2.289481	-2.326836	1.415137
37	1	0	-3.144308	-3.229482	0.151925
38	1	0	-0.947245	-4.344059	0.092687
39	1	0	0.350989	-3.527611	-0.778574
40	1	0	-2.449555	-1.854670	-2.133305
4 L 1 O	⊥ 0	0	-1.00/0/0 1.002207	- J. JZZI//	-Z.IUJ030 _1 50/075
42 1 2	0	0	1.20332/ 3 015710	1 2 1 2 N O 7 A	-1 5/6620
4 S A A	O Q	0	-1 27/611	2 2170024	-1.J40030 -0 653710
44	Q	0		2,21/900	-0 808811
46	8	0	0.647448	4.163298	-0.255010

Table S3. DFT atomic coordinates of $[Sm(octapa)(H_2O)]$ ·2H₂O:

47	1	0	-0.087762	3.596979	-0.595175
48	1	0	1.386031	3.985431	-0.876971
49	8	0	0.954137	1.951352	1.298894
50	8	0	-0.497407	2.446719	3.584285
51	1	0	-1.416564	2.481644	3.280562
52	1	0	0.426796	2.132580	2.122815
53	1	0	0.940584	2.813735	0.796534
54	1	0	-0.395893	1.519876	3.932470
55	6	0	0.200613	-0.512465	2.990843
56	6	0	-0.410183	-2.032566	-2.748733
57	8	0	0.169721	-0.096346	4.171945
58	8	0	-0.673242	-0.258176	2.087157
59	8	0	0.360312	-1.134952	-2.220533
60	8	0	-0.300533	-2.510387	-3.886195

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Type	Х	Y	Z
1	7	0	-2.663686	0.059381	-0.174493
2	7	0	2.645761	-0.225422	-0.327848
3	7	0	1.191312	-1.938238	1.244882
4	7	0	-1.318170	-2.302787	-0.395254
5	6	0	-5.449081	0.158312	-0.034347
6	6	0	4.722793	-1.291339	0.229005
7	6	0	3.323247	-1.256554	0.201711
8	6	0	2.486676	-2.404919	0.711688
9	6	0	0.259308	-3.085487	1.372246
10	6	0	1.382253	-1.308122	2.565666
11	6	0	4.731526	0.852580	-0.858028
12	6	0	3.337963	0.804578	-0.853483
13	6	0	2.490164	1.914571	-1.433619
14	6	0	5.435985	-0.220719	-0.310335
15	6	0	-4.714785	1.310436	-0.316526
16	6	0	-3.324424	1.216295	-0.372623
17	6	0	-2.459606	2.433222	-0.624099
18	6	0	-4.767324	-1.039015	0.185172
19	6	0	-3.369613	-1.048866	0.111429
20	6	0	-2.564035	-2.292912	0.394619
21	6	0	-0.428746	-3.400429	0.052296
22	6	0	-1.625352	-2.494079	-1.829888
23	1	0	-6.532940	0.189179	0.013604
24	1	0	5.234856	-2.140879	0.668515
25	1	0	2.287093	-3.079125	-0.128823
26	1	0	3.045591	-2.984749	1.461056
27	1	0	0.789769	-3.978828	1.733886
28	1	0	-0.482260	-2.829223	2.131784
29	1	0	2.232920	-0.620521	2.503133
30	1	0	1.611156	-2.043866	3.349938
31	1	0	5,228092	1.717095	-1.282378
32	1	0	6.521266	-0.222502	-0.297319
33	1	0	-5.182328	2.272147	-0.490909
34	1	0	-5.303119	-1.955757	0.407805
35	1	0	-2.296564	-2.282996	1.455967
36	1	0	-3.170177	-3.192562	0.210170
37	1	0	-0.990537	-4.343010	0.145059
38	1	0	0.319302	-3.553261	-0.732225
39	1	0	-2.522258	-1.914607	-2.074268
40	1	0	-1 838364	-3 545839	-2 064330
41	- 8	0	1.251500	1.631264	-1.582848
42	8	0	3.023655	3.016901	-1.694295
43	8	0 0	-1.188198	2.200656	-0.567332
44	8	0 0	-2.998718	3.528110	-0.841853
45	8	0 0	0.768516	4.126040	-0.277056
4.6	1	0 0	0.009323	3.571434	-0.581865
47	1	0 0	1.472060	3,933789	-0.934104
48	- 8	Ũ	1.032654	1.882654	1.257263

Table S5. DFT atomic coordinates of $[Dy(octapa)(H_2O)]^- \cdot 2H_2O$:

49	8	0	-0.414511	2.510097	3.517848
50	1	0	-1.327271	2.606864	3.208405
51	1	0	0.506380	2.100224	2.072779
52	1	0	1.051005	2.739272	0.746924
53	1	0	-0.380651	1.586363	3.884317
54	6	0	0.162980	-0.471738	2.968523
55	6	0	-0.496493	-1.969350	-2.729061
56	8	0	0.104225	-0.057487	4.148497
57	8	0	-0.683858	-0.203899	2.041745
58	8	0	0.190033	-0.989052	-2.229290
59	8	0	-0.347996	-2.458156	-3.856327
60	66	0	0.000442	0.134701	-0.208394

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	X	¥ 	Z
1	70	0	0.004584	0.142695	-0.192148
2	7	0	-2.640249	0.037908	-0.179412
3	7	0	2.633695	-0.204876	-0.287670
4	7	0	1.184126	-2.000029	1.176942
5	7	0	-1.290238	-2.291070	-0.504794
6	6	0	-5.426487	0.135130	-0.009317
7	6	0	4.719634	-1.273208	0.235003
8	6	0	3.319807	-1.250226	0.200352
9	6	0	2.494079	-2.428618	0.653210
10	6	0	0.265198	-3.161776	1.231385
11	6	0	1.335288	-1.423649	2.525412
12	6	0	4.714175	0.911087	-0.764832
13	6	0	3.321336	0.849185	-0.769708
14	6	0	2.466509	1.967886	-1.316467
15	6	0	5.426564	-0.175425	-0.254889
16	6	0	-4.691517	1.298436	-0.239027
17	6	0	-3.302362	1.202953	-0.312850
18	6	0	-2.434054	2.423905	-0.510502
19	6	0	-4.744713	-1.072363	0.142241
20	6	0	-3.347507	-1.080757	0.056090
21	6	0	-2.543929	-2.339148	0.267170
22	6	0	-0.398076	-3.406304	-0.114862
23	6	0	-1.577082	-2.394925	-1.951320
24	1	0	-6.509805	0.165326	0.049877
25	1	0	5.236152	-2.136114	0.642194
26	1	0	2.319974	-3.074087	-0.215200
27	1	0	3.049439	-3.027825	1.390132
28	1	0	0.799985	-4.067985	1.552213
29	1	0	-0.490879	-2.956348	1.992294
30	1	0	2.180964	-0.727163	2.514033
31	1	0	1.547590	-2.187025	3.287666
32	1	0	5.203568	1.796234	-1.153495
33	1	0	6.511704	-0.167268	-0.234363
34	1	0	-5.157530	2.269075	-0.360088
35	1	0	-5.279695	-1.999025	0.321841
36	1	0	-2.292217	-2.399951	1.330618
37	1	0	-3.145851	-3.225730	0.016000
38	1	0	-0.950406	-4.358833	-0.090332
39	1	0	0.364581	-3.501200	-0.894534
40	1	0	-2.472303	-1.804260	-2.174163
41	1	0	-1.780288	-3.430597	-2.255942
42	8	0	1.229767	1.679359	-1.465581
43	8	0	2.990939	3.080206	-1.554022
44	8	0	-1.164453	2.177200	-0.479529
45	8	0	-2.963253	3.534081	-0.666145
46	8	0	0.751286	4.118234	-0.067662
47	1	0	-0.000032	3.572113	-0.405998
48	1	0	1.458656	3.965969	-0.731219

Table S6. DFT atomic coordinates of $[Yb(octapa)(H_2O)]^- \cdot 2H_2O$:

49	8	0	0.992113	1.788267	1.341353
50	8	0	-0.509153	2.329554	3.590944
51	1	0	-1.412332	2.450027	3.262376
52	1	0	0.444965	1.968547	2.152360
53	1	0	1.024358	2.669767	0.876106
54	1	0	-0.493723	1.390598	3.917175
55	6	0	0.097412	-0.614295	2.921794
56	6	0	-0.433517	-1.811261	-2.791115
57	8	0	-0.018879	-0.266503	4.118459
58	8	0	-0.708671	-0.296789	1.973622
59	8	0	0.240519	-0.866620	-2.211745
60	8	0	-0.256894	-2.223605	-3.944374

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	туре	X	х 	ٽ
1	57	0	0.008149	-0.035875	0.007743
2	7	0	-2.786153	-0.194670	0.147647
3	7	0	2.765025	-0.473325	-0.138442
4	7	0	1.249083	-2.178965	1.486970
5	7	0	-1.344879	-2.537776	-0.116708
6	6	0	-5.562076	-0.207765	0.419738
7	6	0	4.781321	-1.665073	0.396091
8	6	0	3.386420	-1.546822	0.383541
9	6	0	2.505451	-2.668095	0.884632
10	6	0	0.288555	-3.302563	1.626388
11	6	0	1.514784	-1.592725	2.817107
12	6	0	4.907391	0.456819	-0.721087
13	6	0	3.512464	0.503393	-0.690133
14	6	0	2.767297	1.676831	-1.300030
15	6	0	5.552631	-0.646496	-0.163598
16	6	0	-4.888514	0.973548	0.107999
17	6	0	-3.499933	0.935163	-0.024496
18	6	0	-2.716340	2.190757	-0.361380
19	6	0	-4.825476	-1.379800	0.592055
20	6	0	-3.432703	-1.332611	0.456433
21	6	0	-2.575680	-2.553524	0.698932
22	6	0	-0.429739	-3.620775	0.320527
23	6	0	-1.669984	-2.736213	-1.546634
24	1	0	-6.642605	-0.219192	0.521648
25	1	0	5.245727	-2.541626	0.835515
26	1	0	2.245860	-3.293529	0.023369
27	1	0	3.065641	-3.305060	1.585362
28	1	0	0.803865	-4.206593	1.985410
29	1	0	-0.433477	-3.021425	2.395758
30	1	0	2.411062	-0.966226	2.748812
31	1	0	1.716128	-2.362130	3.576731
32	1	0	5.446100	1.279869	-1.175003
33	1	0	6.635858	-0.714977	-0.164061
34	1	0	-5.402446	1.915856	-0.038983
35	1	0	-5.315030	-2.319065	0.827166
36	1	0	-2.283311	-2.551103	1.754185
37	1	0	-3.163408	-3.467298	0.522309
38	1	0	-0.979419	-4.568840	0.430186
39	1	0	0.300708	-3.766975	-0.480344
40	1	0	-2.525597	-2.099201	-1.796864
41	1	0	-1.962250	-3.775229	-1.754973
42	8	0	1.480661	1.569727	-1.327406
43	8	0	3.425980	2.644135	-1.718271
44	8	0	-1.441838	2.018747	-0.506608
45	8	0	-3.326123	3.265768	-0.465298
46	8	0	0.445209	3.927873	-0.349436
47	1	0	-0.416993	3.449331	-0.446020
48	1	0	1.000735	3.366630	-0.934178

Table S7. DFT atomic coordinates of $[La(octapa)(H_2O)]^- \cdot 2H_2O$:

49	8	0	0.891942	1.959743	1.486587
50	8	0	-0.362238	2.307850	3.901513
51	1	0	-1.309063	2.298319	3.697360
52	1	0	0.421428	2.129922	2.346165
53	1	0	0.801999	2.784767	0.938351
54	1	0	-0.178778	1.380405	4.216131
55	6	0	0.366270	-0.684367	3.282460
56	6	0	-0.513714	-2.327604	-2.480655
57	8	0	0.432505	-0.220461	4.444621
58	8	0	-0.550754	-0.421988	2.426290
59	8	0	0.326593	-1.471475	-1.994183
60	8	0	-0.494207	-2.802251	-3.625219

References

- 1. E. W. Price, B. M. Zeglis, J. F. Cawthray, C. F. Ramogida, N. Ramos, J. S. Lewis, M. J. Adam and C. Orvig, *J. Am. Chem. Soc.*, 2013, **135**, 12707-12721.
- 2. F. K. Kalman, A. Vegh, M. Regueiro-Figueroa, E. Toth, C. Platas-Iglesias and G. Tircso, *Inorg. Chem.*, 2015, **54**, 2345-2356.