Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Methylation of Ir(III)-tetrazolato complexes: an effective route to modulate the emission outputs and to switch to antimicrobial properties.

Valentina Fiorini,^a Ilaria Zanoni,^{a,b} Stefano Zacchini,^a Anna Luisa Costa,^b Alejandro Hochkoeppler,^{c,e} Valerio Zanotti,^a Anna Maria Ranieri,^d Massimiliano Massi,^{d*} Alessandra Stefan^{c,e*} and Stefano Stagni^{a*}

a: Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.

b: CNR-ISTEC- National Research Council of Italy, Institute of Science and Technology for Ceramics, Via Granarolo 64 I-48018, Faenza (RA), Italy.

c: Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.

d: Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U 1987, Perth, Australia 6845.

e: CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.

ESI – Electronic Supplementary Information

ESI-MS spettroscopy

Figure S1: ESI-MS spectrum of **[F₂IrPTZ]** (positive ions region) [M+H] = 720 m/z; $[M+Na]^+ = 742 \text{ m/z}$; $[M+K]^+ = 758 \text{ m/z}$, CH_3CN .

Figure S2: ESI-MS spectrum of $[F_2IrPTZ-Me]^+$ (positive ions region) $[M]^+ = 734 m/z$, CH_3CN .

Figure S3: ESI-MS spectrum of **[IrQTZ]** positive ions region) $[M+H]^+ = 698 m/z$, CH₃CN.

Figure S4: ESI-MS spectrum of **[IrQTZ-Me]**⁺ positive ions region) $[M]^+ = 712 m/z$, CH₃CN.

NMR spectroscopy

Figure S5: ¹H NMR of [F₂IrPTZ], CD₃CN, 400 MHz.

Figure S6: ¹H NMR of [F₂IrPTZ-Me]⁺, CD₃CN, 400 MHz.

Figure S7: ¹H NMR of [IrQTZ], CD₃CN, 400 MHz.

Figure S8: ¹H NMR of [IrQTZ-Me]⁺, CD₃CN, 400 MHz.

Figure S9: ¹³C NMR of [F₂IrPTZ], CD₃CN, 400 MHz.

Figure S10: ¹³C NMR of [F₂IrPTZ-Me]⁺, CD₃CN, 400 MHz.

Figure S11: ¹³C NMR of [IrQTZ], CD₃CN, 400 MHz.

Figure S12: ¹³C NMR of [IrQTZ-Me]⁺, CD₃CN, 400 MHz.

Photophysical Proprieties

CH ₂ Cl ₂ as	Absorption	Emission 298 K ^{a,b}				Emission 77K ^c		
solvent	$\lambda_{abs}(nm);(10^{-4}\epsilon)(M^{-1}cm^{-1})$	λ _{em} (nm)	τ _{air} (μs)	τ _{Ar} (μs)	$oldsymbol{arphi}_{air}$ (%)	$arphi_{Ar}$ (%)	$\lambda_{ m em}$ (nm)	τ (μs)
[IrQTZ]	260 (6.48), 342 (1.60), 386 (0.72), 423 (0.45)	580	0.160	0.840	2.6	6.5	516, 550	4.2
[lrQTZ-Me] ⁺	253 (4.25), 310 (1.41), 374 (0.78)	638	0.220	0.550	2.8	4.5	568	1.56
[F ₂ IrPTZ]	252 (7.84), 304 (3.30), 369 (1.04)	456, 486	0.100	0.160	2.8	6.9	456, 486	2.69
[F2IrPTZ-Me] ⁺	257 (6.24), 318 (2.70), 351 (1.20)	454, 486, 526	0.040	0.140	1.7	4.7	448 480	6.62

Table S1: Photophysical data summary for Ir(III) complexes discussed in this work.

^a: "Air" means air equilibrated solutions, "Ar" means deoxygenated solutions under argon atmosphere; ^b: $[Ru(bpy)_3]Cl_2/H_2O$ was used as reference for quantum yield determinations ($\Phi_r = 0.028$)¹⁸; ^c: in frozen CH₂Cl₂

Figure S13: (left) absorption profile of **[F₂IrPTZ]**, 10^{-5} M, CH₂Cl₂, r.t.; (right) excitation profile of **[F₂IrPTZ]**, 10^{-5} M, CH₂Cl₂, r.t.

Figure S14: (left) absorption profile of **[F₂IrPTZ-Me]**⁺, 10⁻⁵ M, CH₂Cl₂, r.t.; (right) excitation profile of **[F₂IrPTZ-Me]**⁺, 10⁻⁵ M, CH₂Cl₂, r.t.

Figure S15: (left) absorption profile of [IrQTZ], 10^{-5} M, CH_2Cl_2 , r.t.; (right) excitation profile of [IrQTZ], 10^{-5} M, CH_2Cl_2 , r.t.

Figure S16: (left) absorption profile of **[IrQTZ-Me]**⁺, 10⁻⁵ M, CH₂Cl₂, r.t.; (right) excitation profile of **[IrQTZ-Me]**⁺, 10⁻⁵ M, CH₂Cl₂, r.t.

Figure S17: Emission profile of [F_2 IrPTZ], air equilibrated (black line) and deoxygenated solution (blue line), 10⁻⁵ M, CH₂Cl₂, r.t.

Figure S18: Emission profile of **[F₂IrPTZ]**, 298K (black line) and frozen solvent matrix, 77K (blue line), 10⁻⁵ M, CH₂Cl₂.

Figure S19: Emission profile of $[F_2IrPTZ-Me]^+$, air equilibrated (black line) and deoxygenated solution (blue line), 10^{-5} M, CH_2Cl_2 , r.t.

Figure S20: Emission profile of $[F_2IrPTZ-Me]^+$, 298K (black line) and frozen solvent matrix, 77K (blue line), 10^{-5} M, CH_2Cl_2 .

Figure S21: Normalized Emission profile of **[F₂IrPTZ]** (blue line) and **[F₂IrPTZ-Me]**⁺ (red line), 298K, 10⁻⁵ M, CH₂Cl₂.

Figure S22: Emission profile of **[IrQTZ]**, air equilibrated (black line) and deoxygenated solution (blue line), 10^{-5} M, CH₂Cl₂, r.t.

Figure S23: Emission profile of **[IrQTZ]**, 298K (black line) and frozen solvent matrix, 77K (blue line), 10⁻⁵ M, CH₂Cl₂.

Figure S24: Emission profile of **[IrQTZ-Me]**⁺, air equilibrated (black line) and deoxygenated solution (blue line), 10^{-5} M, CH₂Cl₂, r.t.

Figure S25: Emission profile of **[IrQTZ-Me]**⁺, 298K (black line) and frozen solvent matrix, 77K (blue line), 10⁻⁵ M, CH₂Cl₂.

Figure S26: Normalized Emission profile of **[IrQTZ]** (blue line) and **[IrQTZ-Me]**⁺ (red line), 298K, 10⁻⁵ M, CH₂Cl₂.

Evaluation of the antibacterial activity

Figure S27: Kinetics of growth of *Escherichia coli* at 37 °C. Cultures were incubated with 5 μ M and 20 μ M [F₂IrPTZ] and [IrQTZ] or with 5 μ M and 20 μ M [F₂IrPTZ-Me]⁺ and [IrQTZ-Me]⁺ complexes (panel a and b, respectively). A control culture (dark dots) and cultures treated with 0.4% and 1.5% DMSO are shown (green and pale green lines, respectively).

Figure S28: Kinetics of growth of *Deinococcus radiodurans* at 30 °C in the presence of neutral complexes. Cultures were treated with 5 μ M and 20 μ M [F₂IrPTZ] (a) or [IrQTZ] (b) (blue and red dots, respectively), 0.4% DMSO (green dots) and 1.5% DMSO (orange dots). A control culture without any complex was performed (black curve).

Table S2: Growth data at 30°C of of *Deinococcus radiodurans* cultures in the presence of [F₂IrPTZ]

Time	Absorbance at 600 nm						
	Control	5μM [F₂lrPTZ]	20 μM [F₂lrPTZ]	0.4% DMSO	1.5% DMSO		
0	0.05	0.05	0.05	0.05	0.05		
1.5	0.065	0.064	0.064	0.065	0.065		
3	0.095	0.0855	0.083	0.085	0.089		
5	0.15	0.128	0.1	0.134	0.149		
7	0.235	0.18	0.119	0.216	0.22		
8.5	0.46	0.35	0.147	0.43	0.44		
10	0.65	0.51	0.2	0.58	0.56		
24	1.02	0.93	0.52	0.84	0.75		

Table S3: Growth data at 30°C of of Deinococcus radiodurans cultures in the presence of [IrQTZ]

Time	Absorbance at 600 nm						
	Control	5μM [IrQTZ]	20 μΜ [IrQTZ]	0.4% DMSO	1.5% DMSO		
0	0.05	0.05	0.05	0.05	0.05		
2.5	0.09	0.08	0.081	0.091	0.08		
4.5	0.125	0.125	0.115	0.125	0.12		
6.5	0.24	0.22	0.165	0.225	0.215		
8	0.435	0.39	0.28	0.43	0.42		
10	0.71	0.6	0.52	0.68	0.65		
24	1.12	0.91	0.79	0.97	0.87		

Figure S29: Kinetics of growth of *Deinococcus radiodurans* at 30 °C in the presence of cationic complexes. Cultures were treated with 5 μ M and 20 μ M [F₂IrPTZ-Me]⁺(a) or [IrQTZ-Me]⁺(b) (blue and red dots, respectively), 0.4% DMSO (green dots) and 1.5% DMSO (orange dots). A control culture without any complex was performed (black curve).

Table S4: Growth data at 30°C of of *Deinococcus radiodurans* cultures in the presence of [F₂IrPTZ-Me]⁺

Time	Absorbance at 600 nm						
Time	Control	5µM [F₂lrPTZ-Me]⁺	20 μM [F₂lrPTZ-Me]⁺	0.4% DMSO	1.5% DMSO		
0	0.05	0.05	0.05	0.05	0.05		
1.5	0.051	0.051	0.051	0.051	0.051		
3	0.11	0.055	0.055	0.07	0.08		
4.5	0.225	0.05	0.06	0.15	0.13		
8	0.74	0.06	0.06	0.7	0.57		
20	1.02	0.12	0.068	0.9	0.78		
24	1.09	0.125	0.07	0.95	0.82		

Table S5: Growth data at 30°C of of *Deinococcus radiodurans* cultures in the presence of [IrQTZ-Me]⁺

Time	Absorbance at 600 nm					
Time	Control	5µM [lrQTZ-Me]⁺	20 µM [lrQTZ-Me]⁺	0.4% DMSO	1.5% DMSO	
0	0.05	0.05	0.05	0.05	0.05	
2.5	0.092	0.074	0.084	0.076	0.064	
5	0.19	0.075	0.09	0.15	0.12	
7	0.33	0.086	0.1	0.29	0.24	
9	0.60	0.087	0.1	0.57	0.48	
24	1.04	0.088	0.09	0.9	0.8	

Figure S30: Kinetics of growth of *Deinococcus radiodurans* at 30 °C in the presence of different concentration of cationic complexes. Cultures were treated with 0.5, 1, 2.5 and 5 μ M [F₂IrPTZ-Me]⁺ or [IrQTZ-Me]⁺ (a and b, respectively). A control culture without any complex was performed (black curve).

Figure S31: Kinetics of growth of *Deinococcus radiodurans* at 30 °C in the presence of different concentration of neutral **[IrPTZ]** complex. Cultures were treated with 5 μ M and 20 μ M (blue dots and red dots, respectively) 0.4% DMSO (green dots) and 1.5% DMSO (orange dots). A control culture without any complex was performed (black curve).

Table S6: Growth data at 30°C of of *Deinococcus radiodurans* cultures in the presence of [IrPTZ].

Time			Absorbance at 600 nm		
Time	Control	5μM [IrPTZ]	20 μΜ [IrPTZ]	0.4% DMSO	1.5% DMSO
0	0.05	0.05	0.05	0.05	0.05
1.5	0.065	0.064	0.064	0.065	0.065
3	0.095	0.092	0.09	0.1	0.095
5	0.16	0.155	0.14	0.17	0.165
7	0.29	0.245	0.21	0.28	0.275
8	0.48	0.395	0.355	0.47	0.45
10	0.704	0.561	0.495	0.594	0.55
24	1.067	0.946	0.737	0.902	0.792

Figure S32: kinetics of dark-growth of *Deinococcus radiodurans* at 30 °C, in the presence of different concentration of cationic complexes. Cultures were treated with 5 and 20 μ M [F₂IrPTZ-Me]⁺ or [IrQTZ-Me]⁺ (blue dots/red dots, green dots/orange dots, respectively). A control culture without any complex was performed (black curve).

Table S7: dark-growth data at 30°C of *Deinococcus radiodurans* cultures in the presence of [F₂IrPTZ-Me]⁺ and [IrQTZ-Me]⁺.

	Absorbance at 600 nm						
Time	Control	5µM [F₂lrPTZ- Me]⁺	20 μM [F₂lrPTZ- Me]⁺	5µM [IrQTZ- Me]⁺	20μM [lrQTZ-Me]⁺		
0	0.05	0.05	0.05	0.05	0.05		
2	0.08	0.075	0.075	0.065	0.08		
3.5	0.11	0.1	0.1	0.1	0.1		
5	0.185	0.11	0.115	0.17	0.11		
7	0.34	0.125	0.13	0.28	0.125		
8.5	0.48	0.125	0.135	0.47	0.13		
10	0.65	0.125	0.13	0.594	0.13		
24	1.16	0.12	0.125	0.902	0.135		

	[IrQTZ]·3 CH ₃ CN	[IrQTZ-Me] ⁺ [PF ₆] ⁻ ·solv	[F₂IrPTZ-Me] ⁺ [PF ₆] ⁻ ·2CH₂Cl₂
Formula	$C_{38}H_{31}IrN_{10}$	$C_{33}H_{25}F_6IrN_7P$	$C_{31}H_{23}Cl_4F_{10}IrN_7P$
Fw	819.93	856.77	1048.53
Т, К	100(2)	100(2)	100(2)
<i>λ,</i> Å	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space Group	P2 ₁ /n	P2 ₁ /c	P2 ₁ /c
<i>a,</i> Å	10.1798(7)	8.4719(5)	16.992(3)
<i>b,</i> Å	21.5492(15)	18.6483(10)	11.9864(19)
<i>c,</i> Å	15.7661(11)	41.050(2)	17.811(3)
<i>β</i> , °	98.325(2)	93.604(4)	96.203(3)
Cell Volume, Å ³	33422.1(4)	6472.5(6)	3606.3(10)
Z	4	8	4
<i>D_c</i> , g cm ⁻³	1.591	1.758	1.931
<i>μ</i> , mm⁻¹	3.945	4.246	4.131
F(000)	1624	3344	2032
Crystal size, mm	0.22×0.18×0.14	0.14×0.11×0.07	0.14×0.12×0.10
hetalimits, °	1.612-28.000	1.477–23.531	2.052-25.100
	$-13 \le h \le 13$	-9 ≤ h ≤9	-20 ≤ h ≤20
Index ranges	$-28 \le k \le 28$	$-20 \le k \le 20$	$-14 \le k \le 14$
	$-20 \le I \le 20$	-46 ≤ I ≤46	$-421 \le l \le 21$
Reflections collected	50767	61336	39761
Independent reflections	8272 [<i>R</i> _{int} = 0.0383]	9620 [<i>R</i> _{int} = 0.3090]	6406 [<i>R</i> _{int} = 0.0730]
Completeness to $ heta$ max	100.0%	100.0%	99.08%
Data / restraints / parameters	8272 / 105 / 456	9620 / 1008 / 866	6406 / 494 / 439
Goodness on fit on F ²	1.073	1.026	1.078
$R_1 (l > 2\sigma(l))$	0.0219	0.0817	0.0857
wR_2 (all data)	0.0530	0.1826	0.2325
Largest diff. peak and hole, e Å ⁻³	0.908 / -1.388	1.291 / -2.043	3.815 / -2.533

Table S8: Crystal data and collection details for [IrQTZ]·3CH₃CN, [IrQTZ-Me]⁺[PF₆]⁻·solv and [F₂IrPTZ-Me]⁺[PF₆]⁻·2CH₂Cl₂.