Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Materials

Heteroaryldisilenes: heteroaryl groups serve as electron acceptors for Si=Si double bonds in the intramolecular charge transfer transitions

Tomoyuki Kosai, Shintaro Ishida, Takeaki Iwamoto*

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

Email: iwamoto@m.tohoku.ac.jp

Contents

1.	NMR spectra	S2
2.	Equilibrium between <i>syn-6</i> and <i>anti-6</i>	S21
3.	X-Ray Analysis	S27
4.	UV-vis Absorption Spectra	S29
5.	Theoretical Calculations	S30

1. NMR Spectra

Figure S1. ¹H NMR spectrum of **1** in C₆D₆ at 298 K (\bullet = C₆HD₅, x = hexane).

Figure S2. ¹³C{¹H} NMR spectrum of **1** in C₆D₆ at 298 ($\bullet = C_6D_6$).

Figure S3. 13 C (DEPT135) NMR spectrum of 1 in C₆D₆ at 296 K.

Figure S4. ²⁹Si{¹H} NMR spectrum of 1 in C_6D_6 at 296 K.

Figure S5. ¹H-²⁹Si HMBC NMR spectrum of 1 in C₆D₆ at 298 K.

Figure S6. ¹H NMR spectrum of **2** in C₆D₆ at 299 K ($\bullet = C_6HD_5$).

Figure S8. ¹³C (DEPT135) NMR spectrum of 2 in C₆D₆ at 300 K.

Figure S10. ¹H-²⁹Si HMBC NMR spectrum of 2 in C₆D₆ at 299 K.

Figure S11. ¹H NMR spectrum of 3 in C₆D₆ at 300 (\bullet = C₆HD₅).

Figure S12. ¹³C{¹H} NMR spectrum of **3** in C₆D₆ at 300 K ($\bullet = C_6D_6$).

Figure S14. ²⁹Si{¹H} NMR spectrum of 3 in C_6D_6 at 300 K.

Figure S16. ¹H NMR spectrum of **4** in C_6D_6 at 300 K($\bullet = C_6H D_5$).

Figure S17. ¹³C{¹H} NMR spectrum of **4** in C₆D₆ at 301 K ($\bullet = C_6D_6$).

Figure S18. ¹³C (DEPT135) NMR spectrum of 4 in C_6D_6 at 300 K.

Figure S20. $^{1}H^{-29}Si$ HMBC NMR spectrum of 4 in C₆D₆ at 300 K.

Figure S21. ¹H NMR spectrum of 5 in C_6D_6 at 303 ($\bullet = C_6H D_5$).

Figure S22. ¹³C{¹H} NMR spectrum of 5 in C_6D_6 at 303 K (• = C_6D_6).

Figure S23. ¹³C (DEPT135) NMR spectrum of 5 in C₆D₆ at 303 K.

Figure S24. ²⁹Si $\{^{1}H\}$ NMR spectrum of 5 in C₆D₆ at 303 K.

Figure S25. ¹H-²⁹Si HMBC NMR spectrum of 5 in C₆D₆ at 299 K.

Figure S26. ¹H NMR spectrum of **6** in C₆D₆ at 298 ($\bullet = C_6HD_5$, x = hexane).

Figure S27. ¹³C{¹H} NMR spectrum of **6** in C₆D₆ at 301 K ($\bullet = C_6D_6$).

Figure S28. ¹³C (DEPT135) NMR spectrum of 6 in C_6D_6 at 299 K.

Figure S29. ²⁹Si $\{^{1}H\}$ NMR spectrum of **6** in C₆D₆ at 299 K.

Figure S30. ¹H-²⁹Si HMBC NMR spectrum of 6 in C_6D_6 at 299 K.

Figure S31. ¹H-¹H ROESY NMR spectrum of 6 in C₆D₆ at 298 K.

Figure S33. ${}^{13}C{}^{1}H$ NMR spectrum of 7 in C₆D₆ at 300 K (• = C₆D₆).

S19

Figure S36. ¹H-²⁹Si HMBC NMR spectrum of 7 in C₆D₆ at 301 K.

2. Equilibrium between anti-6 and syn-6

Figures S37-S46 show ¹H NMR spectra of **6** measured at 50 °C to -40 °C in toluene-*d*₈. The equilibrium constants (*K*_{eq}) between *anti*-**6** and *syn*-**6** at various temperatures were determined by using the integral ratio of *o*-Me signals. The *K*_{eq} values at various temperatures were summarized in Table S1. A plot of ln(*K*_{eq}) at various temperatures was shown in Figure S47.

Figure S37. ¹H NMR spectrum of 6 in C_7D_8 at 323 K ($\bullet = C_7HD_7$, x = ferrocene).

Figure S38. ¹H NMR spectrum of **6** in C₇D₈ at 313 K (\bullet = C₇HD₇, x = ferrocene).

Figure S39. ¹H NMR spectrum of **6** in C_7D_8 at 303 K ($\bullet = C_7HD_7$, x = ferrocene).

Figure S40. ¹H NMR spectrum of **6** in C₇D₈ at 293 K (\bullet = C₇HD₇, x = ferrocene).

Figure S41. ¹H NMR spectrum of **6** in C_7D_8 at 283 K ($\bullet = C_7HD_7$, x = ferrocene).

Figure S42. ¹H NMR spectrum of **6** in C₇D₈ at 273 K (\bullet = C₇HD₇, x = ferrocene).

Figure S43. ¹H NMR spectrum of **6** in C_7D_8 at 263 K ($\bullet = C_7HD_7$, x = ferrocene).

Figure S44. ¹H NMR spectrum of **6** in C₇D₈ at 253 K (\bullet = C₇HD₇, x = ferrocene).

Figure S45. ¹H NMR spectrum of **6** in C_7D_8 at 243 K ($\bullet = C_7HD_7$, x = ferrocene).

Figure S46. ¹H NMR spectrum of **6** in C_7D_8 at 233 K ($\bullet = C_7HD_7$, x = ferrocene).

Figure S47. A plot of $\ln(K_{eq})$ vs 1/T.

Table S1.Equilibrium Constant K_{eq} in Toluene- d_8 at Various Temperatures

	0	·
T/K	$\kappa_{ m eq}$	$\ln(K_{eq})$
323	1.67	0.513
313	1.77	0.573
303	1.85	0.616
293	1.95	0.667
283	2.08	0.733
273	2.21	0.798
263	2.36	0.858
253	2.39	0.869
243	2.38	0.869
233	2.35	0.855

3. X-ray Analysis

Figure S48. Packing diagram of 1.

	1	2	$3.4(C_5H_{10}O)$	$4 \cdot (C_4 H_{10} O_2)$	5	7
empirical formula	$C_{29}H_{54}SSi_6$	$C_{54}H_{104}SSi_{12}$	$C_{78}H_{146}O_4S_2Si_{12}$	$C_{43}H_{70}O_2Si_6$	C38H59NSi6	$C_{34}H_{62}Si_6$
formula weight	603.32	1122.51	1549.14	787.53	698.4	639.37
Temperature (K)	100(2)	100(2)	100(2)	100(2)	100(2)	100(2)
crystal system	monoclinic	triclinic	monoclinic	triclinic	monoclinic	monoclinic
space group	P21/n	<i>P</i> -1	<i>P</i> 2 ₁ /c	<i>P</i> -1	<i>P</i> 2 ₁ /c	<i>P</i> 2 ₁ /c
<i>a</i> (Å)	13.9334(13)	11.8362(12)	16.030(3)	11.4296(11)	12.2262(11)	11.3903(3)
<i>b</i> (Å)	16.8620(16)	17.6788(17)	30.312(6)	13.7384(13)	16.6001(16)	17.1318(4)
<i>c</i> (Å)	14.7774(14)	18.7605(18)	9.521(2)	15.2495(15)	20.3560(19)	19.8809(5)
α (deg.)	90	84.1110(10)	90	77.0900(10)	90	90
β (deg.)	90.0935(10)	81.8700(10)	93.418(3)	82.3360(10)	103.6680(10)	90.9660(10)
γ (deg.)	90	89.7240(10)	90	79.2250(10)	90	90
$V(\text{\AA}^3)$	3471.9(6)	3865.5(7)	4617.9(17)	2282.4(4)	4014.4(6)	3878.93(17)
Ζ	4	2	2	2	4	4
density (Mg/m ³)	1.154	0.964	1.114	1.146	1.156	1.095
absorption coefficient (mm ⁻¹)	0.318	0.255	0.256	0.216	0.234	0.236
F(000)	1312	1224	1692	856	1512	1400
Theta range for data collection(deg.)	1.832 to 25.999	1.514 to 26.500	1.273 to 25.000	1.376 to 25.499	1.601 to 26.495	1.569 to 27.494
	-17<=h<=16,	-14<=h<=14,	-19<=h<=19,	-13<=h<=13,	-12<=h<=15,	-10<=h<=14
Index ranges	-17<=k<=20,	-22<=k<=22,	-36<=k<=36,	-16<=k<=16,	-19<=k<=20,	-22<=k<=22
	-18<=l<=15	-23<=l<=23	-11<=l<=11	-18<=l<=18	-25<=l<=23	-25<=l<=25
Refrections collected	17762	41666	40728	22849	21223	28627
Independent reflections	6781	15902	8100	8479	8265	8901
[<i>R</i> (int)]	[0.0222]	[0.0177]	[0.0975]	[0.0137]	[0.0120]	[0.0462]
Goodness-of-fit on F^2	1.018	1.044	1.079	1.023	1.032	1.010
Final <i>R</i> indices $[I > 2\sigma(I)]$	0.0304	0.0296	0.0728	0.0316	0.0285	0.0386
R indices (all data)	0.0839	0.0844	0.1991	0.0843	0.0806	0.1006

Table S2. Crystal data of 1-5 and 7.

4. UV-vis Absorption Spectra

Figure S49. UV-vis absorption spectra of (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6 and (g) 7 in hexane (black) and o-dichlorobenzene (orange) with oscillator strength (red and green) calculated at B3LYP/6-31+G(d)/B3PW91-D3/&-31G(d) level of theory.

4. Theoretical Calculations

Table S3. Atomic Coordinate of 1_{opt} Calculated at the B3PW91-D3/6-31G(d) Level.

Atom	х	У	Z	
Si	-0.70628800	1.27156300	0.56795400	
Si	0.53101800	-0.43274000	-0.02741800	
С	0.04560700	2.98201900	0.37861500	
С	0.59838300	3.74041500	1.39293500	
Н	0.66711000	3.37959400	2.41307500	
С	1.07215900	5.01737900	0.98470500	
Н	1.53936100	5.73435200	1.65161000	
С	0.86976400	5.24452300	-0.35030300	
Н	1.12761800	6.12690000	-0.92324000	
S	0.09871500	3.90497500	-1.10417500	
С	-2.58350200	1.27121700	0.29997800	
С	-3.43205500	1.08817800	1.42178100	
С	-4.81472000	1.03991300	1.24771300	
Н	-5.45251000	0.89102800	2.11770100	
С	-5.40329700	1.16750000	-0.01195900	
С	-4.56707800	1.38635600	-1.10297100	
Н	-5.00644900	1.51485100	-2.09123700	
С	-3.17591900	1.45665200	-0.97013500	
С	-2.88066100	0.91433100	2.81507400	
Н	-3.67242600	1.00965300	3.56598300	
Н	-2.10649300	1.65609900	3.04418300	
Н	-2.42248500	-0.07283400	2.93877800	
С	-6.89499400	1.05513700	-0.17920400	
Н	-7.20897600	0.00301900	-0.18304700	
Н	-7.23111400	1.50197300	-1.12052600	
Н	-7.42838500	1.54848000	0.64111200	
С	-2.37797100	1.78963600	-2.20247000	
Н	-2.81360400	1.32980400	-3.09550000	
Н	-1.33996100	1.45246400	-2.12033400	
Н	-2.36248000	2.87470200	-2.36214300	
С	2.43019100	-0.52524100	-0.03195200	
С	2.63784000	-2.02790600	-0.43316800	
Н	2.64004600	-2.13429800	-1.52331400	
Н	3.61964300	-2.39526400	-0.10246000	
С	1.52229600	-2.92317900	0.13808300	
Н	1.69566900	-3.06186900	1.21184500	
Н	1.58805800	-3.92605900	-0.30756000	
С	0.11199200	-2.28927700	-0.09600700	
Si	3.10484000	0.62705600	-1.41571200	
С	3.51805100	2.36574000	-0.80950800	
Н	3.74181100	2.99304900	-1.68112300	
Н	4.38460000	2.40119900	-0.14222900	

Н	2.67041700	2.82161500	-0.29006600
С	1.86600800	0.84906500	-2.83076100
Н	1.08549700	1.56585400	-2.55944400
Н	1.37297200	-0.08038100	-3.13175600
Н	2.39427900	1.24433700	-3.70837600
С	4.65363200	-0.14779700	-2.18253600
Н	4.41881300	-1.08289100	-2.70386000
Н	5.43429600	-0.36056500	-1.44667000
Н	5.07148400	0.54440800	-2.92415600
Si	3.33965600	-0.20582100	1.62296100
С	2.77792900	1.34693100	2.52207000
Н	1.71680900	1.26221600	2.78186800
Н	2.90942600	2.25907100	1.93580400
Н	3.34965300	1.44951400	3.45281700
С	3.13887000	-1.62727100	2.85363200
Н	3.74608800	-1.39382900	3.73762700
Н	3.49451300	-2.58519800	2.45852600
Н	2.10622800	-1.74834600	3.18765300
С	5.21298500	-0.12932500	1.33531400
Н	5.53851900	0.71601000	0.72269600
Н	5.57828100	-1.04899500	0.86294200
Н	5.71075700	-0.04441900	2.30944200
Si	-1.07506700	-2.85263000	1.29875400
С	-0.57864600	-2.13251400	2.97820100
Н	-0.29958200	-1.07455800	2.93774900
Н	0.25862400	-2.69736700	3.40242300
Н	-1.42007700	-2.23721100	3.67493600
С	-2.86522200	-2.38942400	0.93160100
Н	-3.49201800	-2.63818200	1.79674700
Н	-3.26589400	-2.92899100	0.06723900
Н	-2.98433800	-1.32002300	0.73583100
С	-0.94931900	-4.72478000	1.56747800
Н	-1.39111000	-4.96590100	2.54262800
Н	0.09679000	-5.05203100	1.59527600
Н	-1.46924000	-5.31784500	0.81174800
Si	-0.58148400	-2.79379800	-1.81422400
С	-1.83387200	-1.54967400	-2.46657500
Н	-1.31617200	-0.69604600	-2.91440400
Н	-2.49832100	-1.16097700	-1.68881800
Н	-2.45321400	-2.01214100	-3.24495000
С	-1.37905600	-4.51303400	-1.79052900
Н	-2.30219900	-4.56680900	-1.20628700
Н	-0.68893500	-5.27413100	-1.40957300
Н	-1.62712600	-4.78254900	-2.82505800
С	0.78025700	-2.99132500	-3.11791800
Н	0.30473900	-3.32000400	-4.05093700
Н	1.50542700	-3.76304900	-2.83455100
Н	1.33081000	-2.07331400	-3.33932300
		 11 Δ	
Zero-noint	correction-	11.0.	0.760777 (Uartroo / Dartio)
DETO-DOTIIC	COTTECCTON-		U. / UU / / (MAILIEE / PAILIC.

Sum of electronic and thermal Free Energies= -3271.609432

Particle)

S31

 Table S4. Atomic Coordinate of anti-2_{opt} Calculated at the B3PW91-D3/6-31G(d) Level.

Atom	Х	У	Z	
S	-0.00981500	0.13567900	0.02153200	
С	1.21728200	-0.23540700	1.18646700	
С	0.71235800	-0.00739900	2.45427300	
Н	1.28980600	-0.18480600	3.35476000	
С	-0.62405700	0.46856900	2.46566500	
Н	-1.17188800	0.69041300	3.37560800	
С	-1.18514900	0.59935900	1.20828300	
Si	2.86404000	-0.99778300	0.71890300	
Si	4.39435800	0.40660300	0.02243200	
Si	-2.91964100	1.17270300	0.78577600	
Si	-4.22259500	-0.43522900	0.06787400	
С	2.49560800	-2.67937600	-0.08713700	
С	1.89969600	-2.81738100	-1.36114200	
С	1.48878400	-4.08452000	-1.79662700	
Н	1.03583300	-4.17548800	-2.78324300	
С	1.63136500	-5.22239400	-1.00901100	
С	2.23449300	-5.07916000	0.24329800	
Н	2.36345400	-5.95839200	0.87250600	
С	2.66424200	-3.83959200	0.71300900	
С	1.63789600	-1.66280500	-2.29147500	
Н	1.95624200	-1.90689500	-3.31062900	
Н	2.16575500	-0.75907000	-1.97798400	
Н	0.56854400	-1.43064200	-2.32983600	
С	1.12693000	-6.56323700	-1.47051800	
Н	0.94863200	-6.57829200	-2.55056400	
Н	0.17913000	-6.81240700	-0.97560100	
Н	1.83628900	-7.36357800	-1.23114600	
С	3.28504700	-3.76185300	2.08674400	
Н	2.68529700	-3.13713100	2.76117700	
Н	4.28915400	-3.32414000	2.05395700	
Н	3.36568400	-4.75583300	2.53980400	
С	4.55910400	2.23717500	0.49975600	
С	5.94157000	2.56949600	-0.16700800	
Н	5.80005400	2.85408300	-1.21527900	
Н	6.41369300	3.43990000	0.31006900	
С	6.89697500	1.36044800	-0.11746400	
Н	7.27903100	1.25206400	0.90429200	
Н	7.77679600	1.55879100	-0.74632000	
С	6.16808500	0.04808800	-0.55488000	
Si	4.66532100	2.68813900	2.35803800	
С	6.32292900	2.20585200	3.13034300	
Н	6.32097000	2.55324300	4.17148700	
Н	7.17854300	2.67508300	2 63250800	

Н	6.47667600	1.12447900	3.14586300
С	4.59787000	4.57104600	2.57398800
Н	3.64318500	5.01890100	2.28380700
Н	5.39131100	5.06544100	2.00101500
Н	4.76610800	4.80572900	3.63253900
С	3.34300200	1.88861100	3.42679400
Н	3.48150400	2.20956100	4.46676000
Н	3.44461700	0.79826000	3.39201800
Н	2.32571500	2.14247200	3.12134200
Si	3.13573300	3.21413000	-0.35849200
С	3.77144800	4.92215100	-0.87329500
Н	4.55681800	4.84727200	-1.63422100
Н	4.17006100	5.49980700	-0.03447000
Н	2.94359100	5.49406700	-1.31073200
С	1.59610700	3.42158800	0.71302000
Н	0.78514200	3.82243000	0.09159600
Н	1.73925900	4.10759100	1.55363200
Н	1.24907800	2.46470500	1.11256100
С	2.54239300	2.37024400	-1.94820600
H	1.87026900	1.53810100	-1.71833100
Н	3.35003800	1.98151800	-2.57679500
H	1.9/939300	3.10034100	-2.544/9/00
S1	6.26665300	-0.1/861300	-2.45/09900
C	6.21102500	1.4/468400	-3.3815/800
H	6.30254600	1.26319700	-4.45470000
п	5 29271200	2.120/3/00	-3.1003/100
C C	J.20271200 4 87125600	-1 25/52000	-3.12474000
н	4 53493700	-2 01859100	-2 41733700
Н	5.19062200	-1.75919900	-4.04474200
Н	4.00710900	-0.63027400	-3.37059200
С	7.92109700	-0.92275900	-3.00307500
Н	8.04244100	-1.97190900	-2.71683500
Н	8.77399600	-0.35993900	-2.60789800
Н	7.97033200	-0.87184200	-4.09822500
Si	6.92346100	-1.46866100	0.34313800
С	6.61202800	-1.44641000	2.21050400
Н	5.58429800	-1.18716500	2.48319900
Н	7.29493500	-0.75118000	2.71081200
Н	6.82544200	-2.44703800	2.60832900
C	6.24394600	-3.08619800	-0.35154400
H	6.52201400 E 1E122C00	-3.244/0800	-1.39882400
п	5.15152600	-3.13203000	-0.29067200
n C	8 81/11000	-3.92737900 -1.44845000	0.22832500
н	9 22578700	-2 11203700	0.21112000
Н	9 20973100	-0 44365500	0 40219300
Н	9.19678400	-1.78330500	-0.7555100
C	-2.90953000	2.93606200	0.08058200
С	-3.45948700	3.98215300	0.86628400
С	-3.43038000	5.29472500	0.39730200
Н	-3.85960700	6.08521800	1.01104400
C	-2.86646500	5.62423400	-0.83685800
С	-2.30866500	4.59746000	-1.59227200
Н	-1.85147300	4.83287900	-2.55252400
С	-2.31126300	3.26686100	-1.15734500
C	-4.09768600	3.71737500	2.20752400
Н	-4.30704200	4.65398700	2.73534400

Н	-3.45667200	3.10331600	2.85138600
Н	-5.04486300	3.17908700	2.09704000
С	-2.88312100	7.04417700	-1.33606300
Н	-3.86765300	7.30238700	-1.74776000
Н	-2.14365500	7.20280400	-2.12776800
Н	-2.67434200	7.75482000	-0.52839500
С	-1.62152200	2.25770700	-2.03532400
Н	-1.79975200	2.46970300	-3.09488400
Н	-1.96485900	1.23912600	-1.83251300
Н	-0.53835500	2.28116600	-1.86854800
С	-5.99054100	-0.32871200	-0.62018300
С	-6.56044200	-1.72902900	-0.21872400
Н	-7.03937000	-1.66697100	0.76559400
Н	-7.34730600	-2.05523400	-0.91390300
С	-5.44764800	-2.79527500	-0.16106800
Н	-5.19059400	-3.08042800	-1.18795400
Н	-5.83279300	-3.71053200	0.31033800
С	-4.17247900	-2.26802100	0.58681200
Si	-7.04439600	1.05736600	0.18099200
С	-6.86615000	1.10940200	2.06511500
Н	-5.83683100	0.97709600	2.41399700
Н	-7.49523200	0.34413100	2.53206500
Н	-7.22576700	2.08122000	2.42674500
С	-6.61351200	2.76166200	-0.50417200
Н	-6.84777900	2.85927900	-1.56922200
Н	-5.55418000	3.00471300	-0.37621200
Н	-7.19359700	3.52207400	0.03323400
С	-8.89121400	0.72023900	-0.08008200
H	-9.46131600	1.34076200	0.62283900
Н	-9.13624200	-0.32613200	0.13754600
H	-9.24633300	0.94/63600	-1.08//4100
Si	-5.960/9/00	-0.10910400	-2.52661600
C	-4.69651900	1.1//35400	-3.0/511000
H	-4.98569200	1.60029800	-4.04510900
Н	-3.71628700	0.70588600	-3.19596100
п	-4.57664900	2.002/3300	-2.300/3400
Ч	-7.00000200	1 27012000	-2.05420800
n u	-7.90314000	-0 3/328900	-2.95420800
Н	-7 60168200	0.31132300	-2.90234100
C	-5 55190300	-1 72573000	-3 /1972600
н	-5 58487000	-1 53960300	-4 50072700
Н	-6 27755500	-2 51733400	-3 20123200
Н	-4 55271200	-2 09792800	-3 18125400
Si	-2 60159200	-3 14890500	-0 10343000
C	-2 05515800	-2 43951200	-1 76884500
Н	-1.89089100	-1.35798200	-1.75014100
Н	-2.76943300	-2.66761100	-2.56618300
Н	-1.10651900	-2.92385400	-2.02952900
С	-2.98783300	-4.96524500	-0.48310100
H	-2.09497200	-5.41018900	-0.94119900
Н	-3.81048600	-5.06851800	-1.19981000
Н	-3.23575300	-5.55347300	0.40432200
С	-1.12203000	-3.10305300	1.06210600
Н	-0.23478800	-3.43339900	0.50959000
Н	-1.24434600	-3.76860500	1.92244500
Н	-0.91318200	-2.10047300	1.44081600
Si	-4.34156000	-2.63083900	2.46376400

С	-3.19116500	-1.61038600	3.54778600
Н	-3.40539200	-0.54190700	3.43384400
Н	-2.13535200	-1.76678200	3.31496700
Н	-3.35629700	-1.88212100	4.59791900
С	-6.09558800	-2.34870000	3.11082700
Н	-6.11417000	-2.64408700	4.16773000
Н	-6.83842600	-2.96214900	2.58881000
Н	-6.40449100	-1.30384200	3.05645100
С	-4.05572600	-4.47299600	2.81738500
Н	-3.03025900	-4.81108900	2.64643300
Н	-4.72524300	-5.10119500	2.21809200
Н	-4.29382700	-4.65751500	3.87257800
E(RB3LYP) = Zero-point Sum of elec	-5991.69289379 correction= tronic and thermai	A.U. I Free Energie	1.454358 (Hartree/Particle) s= -5990.370879
Zero-point Sum of elec	correction= tronic and thermal	l Free Energie	1.454358 (Hartree/Particle s= -5990.370879

 Table S5. Atomic Coordinate of syn-2_{opt} Calculated at the B3PW91-D3/6-31G(d) Level.

Atom	Х	У	Ζ
S	0.08720400	0.77381400	-0.04113800
С	1.32414800	0.31826900	-1.17828700
С	0.71496000	-0.17174100	-2.32111200
Н	1.27874400	-0.50257600	-3.18640400
С	-0.70172900	-0.15905800	-2.27594900
Н	-1.33054600	-0.47808100	-3.10156300
С	-1.22467900	0.33474800	-1.09273300
Si	3.13907200	0.75611400	-0.96763100
Si	4.47110100	-0.61228700	0.09087800
Si	-2.99668300	0.83458800	-0.76418100
Si	-4.48353800	-0.59803100	-0.03788900
С	3.35781200	2.63751200	-0.85426800
С	3.00783900	3.39135700	0.28918800
С	3.24499500	4.77078100	0.30783200
Н	2.98267400	5.33444500	1.20214300
С	3.79173800	5.44264700	-0.78098100
С	4.08508700	4.70026500	-1.92680200
Н	4.49190900	5.21011700	-2.79881900
С	3.87834100	3.32290100	-1.98249000
С	2.32582700	2.79745600	1.49338500
Н	2.70548600	3.23856400	2.42084200
Н	2.46466100	1.71356700	1.55193200
Н	1.24767200	2.99395900	1.44952100
С	4.07402700	6.92024300	-0.72849900
Н	3.50518300	7.41230900	0.06711900
Н	3.82497700	7.40936800	-1.67700200
Н	5.13885000	7.10790800	-0.53740800
С	4.24281400	2.59556500	-3.25291800
Н	3.45093200	1.90666500	-3.57055800

Н	5.15185000	1.99875400	-3.12132200
Н	4.42356800	3.30069100	-4.07148900
С	4.27356900	-2.49143700	0.26380500
С	5.61565400	-2.85798000	0.98798900
Н	5.49771400	-2.77626400	2.07329200
Н	5.89307100	-3.90541100	0.80345700
C	6.76389200	-1.92801500	0.55282100
Н	7.09555300	-2.22301700	-0.45010300
Н	7.63106700	-2.07848000	1.21185700
C	6.31181000	-0.43073100	0.54402100
Si	4.14931000	-3.51350600	-1.34920300
С	5.79881600	-3.61995600	-2.26702900
Н	5.65898300	-4.27020600	-3.14008600
Н	6.59649900	-4.05944400	-1.65809600
Н	6.13391700	-2.64678500	-2.63241400
С	3.74462600	-5.32207900	-0.94193600
Н	2.76318900	-5.47247200	-0.48341900
Н	4.49853800	-5.74974400	-0.26997900
Н	3.77028200	-5.90470500	-1.87131500
С	2.90737100	-2.84174200	-2.59276000
Н	2.87130000	-3.51060700	-3.46177300
Н	3.23364400	-1.85427800	-2.93854300
Н	1.89507700	-2.74035000	-2.19544700
Si	2.76851100	-2.84149600	1.40470700
C	3.13151100	-4.36626700	2.46744900
H	3.93756800	-4.17499500	3.18511100
Н	3.41396300	-5.23857800	1.87050800
H	2.23523300	-4.62854200	3.04320100
C	1.168//800	-3.10/31400	0.44939200
H	0.36915700	-3.30169000	1.1/165900
H	1.18/16500	-3.94241900	-0.25522200
H Q	0.89462000	-2.20235400	-0.10294400
	2.37768800	-1.41676800	2.59160200
н	2 25691000	-0.62824100	2.06952000
п	1 72520500	-0.95711300 -1.79511400	2 20705500
п с;	L.73320300	-1.79511400	2 20005200
C	6 197/7800	-0.87799900	3 68094400
н	6 36191300	-0.35777800	4 63332100
н	6 89292600	-1 72479200	3 64938900
н	5 17879600	-1 27481200	3 69769300
C	5.38647400	1.83136800	2.53636200
Н	5.28075200	2.45441100	1.64308000
Н	5.76351400	2.46234700	3.35067700
Н	4.38691700	1.48572200	2.81632600
С	8.31321000	0.89899500	2.60551200
Н	8.63183800	1.75037500	1.99666200
Н	9.02286300	0.07977700	2.44482100
Н	8.38948600	1.19926600	3.65832700
Si	7.33010200	0.52696100	-0.76575100
С	6.92607700	-0.04684800	-2.52429300
Н	5.85469300	-0.18242700	-2.70451300
Н	7.43813900	-0.98967400	-2.74590000
Н	7.30116200	0.69701600	-3.23868000
С	7.06493900	2.38922700	-0.64339200
Н	7.44804100	2.80154700	0.29594700
Н	6.00853700	2.66304300	-0.71724200
Н	7.59372100	2.88863700	-1.46449100
С	9.17747200	0.14111400	-0.58784700
---------	-------------	-------------	-------------
Н	9.68665300	0.44712600	-1.51052800
Н	9.34777800	-0.93499200	-0.46462200
Н	9.66051500	0.65759000	0.24474500
С	-3.08668800	2.60392300	-0.08923000
С	-2.86770100	2.91129500	1.27723500
С	-3.13128100	4.20062300	1.74538300
Н	-2.97904400	4.41672400	2.80214200
С	-3.58090800	5.21698600	0.90275000
С	-3.70135600	4.93135500	-0.45619200
Н	-3 99788800	5 72325800	-1 14274800
C	-3 44305300	3 65656100	-0 96633700
C	-2 27285700	1 92902400	2 25271200
Ч	-2 73712200	2 00721300	3 2/102300
п п	-1 20073000	2.00721300	2 37525400
Ч	-1.20073000	2.12924200	1 00750000
11 C	-2.37252600	6 57525000	1 44640000
	-3.93331000	6.60670900	1 75472200
п	-4.90095100	7 20022000	1.75472500
Н	-3.78934500	7.36032900	0.69648600
H	-3.32934300	6.82/51500	2.32457300
C	-3.4/6/2500	3.483/3/00	-2.4643/900
H	-4.36381800	3.94622800	-2.90983500
H	-3.46513500	2.42/42800	-2.75583200
H	-2.59229500	3.955/3800	-2.91091200
C	-4.47751700	-2.49320300	-0.10391100
C	-6.00897400	-2.80447400	-0.15621300
H	-6.34064200	-2.85854600	-1.19946500
H	-6.23146300	-3.78920900	0.27899600
C	-6.83623900	-1.72115500	0.56/23800
H	-6./6233300	-1.89206800	1.64/40300
H	-7.90074900	-1.84508200	0.32223300
C	-6.34142500	-0.2/534800	0.21525200
Si	-3.59956500	-3.26688800	-1.62441500
C	-3.91259600	-2.3111/300	-3.22850800
H	-3.83999900	-1.22543500	-3.10039900
H	-4.89630700	-2.54334000	-3.65011300
Н	-3.16295700	-2.61636400	-3.96975400
C	-1./30/8500	-3.38683600	-1.4153/600
H	-1.41798600	-4.00251300	-0.56903400
H	-1.27737200	-2.40053900	-1.29113700
H	-1.30243100	-3.82989800	-2.3233/900
C	-4.30251600	-4.99836/00	-1.93011400
H	-3.865/2300	-5.40212500	-2.85214000
H	-5.38939600	-4.96861300	-2.06863900
H	-4.08432900	-5.70165200	-1.12205600
Si	-3.67746000	-3.15051400	1.51655200
C	-2.11944300	-2.18048500	1.95956600
H	-1.46615000	-2.78412200	2.60154900
Н	-2.38340200	-1.27586100	2.51794200
Н	-1.54313400	-1.86649800	1.08433500
С	-3.29508800	-5.00675400	1.43502700
H	-2.54999700	-5.29533400	0.68944800
H	-4.20895100	-5.58064800	1.24093700
Н	-2.91956700	-5.31780000	2.41829100
С	-4.85440000	-3.04871800	2.99442900
H	-4.33976700	-3.47073600	3.86723500
H	-5.76365100	-3.63974100	2.83508700
Н	-5.14475800	-2.02734600	3.24718300

Si	-6.66192100	0.90420900	1.69636900
С	-5.43457500	0.62340200	3.11700500
Н	-4.46106300	0.25382800	2.78125500
Н	-5.83479300	-0.08100800	3.85440100
Н	-5.26137200	1.57601700	3.63204500
С	-8.36289500	0.55758500	2.45568000
Н	-8.44385500	1.11422400	3.39811700
Н	-8.48630200	-0.50536500	2.69379900
Н	-9.19775200	0.85950500	1.81836400
С	-6.57087600	2.72944300	1.22871900
Н	-6.73546300	3.32539300	2.13523300
Н	-7.32931100	3.02429400	0.49677200
Н	-5.58827900	3.00328400	0.83354000
Si	-7.25334200	0.35858800	-1.34589700
С	-6.40518900	1.82326100	-2.16929900
Н	-5.58735100	1.46943900	-2.80380700
Н	-5.98531900	2.53864000	-1.45773600
Н	-7.12334800	2.35535100	-2.80577500
С	-7.43022200	-0.97982100	-2.66783000
Н	-7.95633200	-0.54540000	-3.52744900
Н	-8.01717700	-1.83878700	-2.32408300
Н	-6.46034500	-1.33715300	-3.02131400
С	-9.03961600	0.83891900	-0.92819900
Н	-9.11690500	1.74648400	-0.32168000
Н	-9.56439400	0.03321000	-0.40212500
H	-9.57619900	1.02233400	-1.86763400
 E(RB3LYP) = -5		A.U.	
Zero-point cori	rection=		1.453842 (Hartree/Particle)
Sum of electrom	nic and therma	l Free Energie	es= -5990.362545

Table S6. Atomic Coordinate of anti-3_{opt} Calculated at the B3PW91-D3/6-31G(d) Level.

Atom	x	У	Z	
Si	4.98197100	1.10416900	0.56039700	
Si	6.14937600	-0.70157800	0.13520200	
С	3.11636000	0.89230900	0.58137300	
С	2.32678600	0.77256900	1.71060500	
Н	2.74170200	0.79918800	2.71186300	
С	0.94517200	0.60865300	1.45122100	
Н	0.18731100	0.51102000	2.22187700	
С	0.64505800	0.60995700	0.10425300	
С	5.51687100	2.80471100	-0.08722300	
С	6.06229400	3.73981300	0.82929300	
С	6.50182000	4.98315500	0.37582200	
Н	6.92495000	5.68737600	1.09052500	

С	6.42261700	5.34646900	-0.96984000
С	5.85114000	4.43901600	-1.85742900
Н	5.75597900	4.71182500	-2.90754100
С	5.38454100	3.18719300	-1.44190500
С	6.20975400	3.42177900	2.29658600
Н	7.01950300	2.70407300	2.46679000
Н	5.29774900	2.97779500	2.71271500
Н	6.43927900	4.32435400	2.87319400
С	6.95576300	6.67243800	-1.44232400
Н	6.75707100	7.46682900	-0.71426500
Н	6.51232800	6.96880000	-2.39854000
Н	8.04367300	6.62724200	-1.58386400
С	4.70327100	2.32476500	-2.47052300
Н	3.64922400	2.61214100	-2.56852900
Н	4.73351900	1.26501800	-2.19888900
Н	5.16932900	2.43523300	-3.45504300
С	5.65689700	-2.50145200	0.50041800
С	6.97703300	-3.24225900	0.08665500
Н	7.05805400	-4.21780700	0.58651200
Н	6.96815100	-3.46506600	-0.98580000
С	8.22226200	-2.38965300	0.39334800
Н	9.10779800	-2.84778600	-0.06990500
Н	8.40675500	-2.40952700	1.47392900
С	8.02878300	-0.91388500	-0.08615900
С	4.25442100	-2.03683600	-2.30003000
Н	3.61996700	-2.54993300	-3.03457000
Н	5.25504000	-1.94473400	-2.73356700
Н	3.85642200	-1.02740000	-2.16402800
С	2.50830900	-2.74393700	0.06900100
Н	2.39285800	-1.73168500	0.46511700
Н	2.27027900	-3.44985100	0.87064900
Н	1.75780500	-2.87019100	-0.72075700
С	4.41196200	-4.83347300	-1.15172100
Н	4.44541500	-5.50041600	-0.28561100
Н	5.31923100	-5.00288500	-1.74284400
Н	3.55693300	-5.13155600	-1.77126300
С	4.03043600	-1.80147100	3.15272100
Н	3.06238700	-1.74940900	2.64963900
Н	4.44854600	-0.78944000	3.19040900
Н	3.86537200	-2.14027000	4.18309100
С	4.58236900	-4.73934700	2.40094900
Н	4.45413200	-5.00920100	3.45673300
Н	5.29524500	-5.45109600	1.96797100
Н	3.61896200	-4.88250500	1.90376300
С	6.77699900	-3.00921200	3.42226800
Н	7.23673500	-2.02569600	3.54052800
Н	7.53876200	-3.71260300	3.06855200
Н	6.45963500	-3.34628000	4.41743500
С	8.19866500	-2.28105800	-2.94554500
Н	7.13964700	-2.53977300	-3.02548300
Н	8.73338000	-3.15386300	-2.55312900
H	8.56923600	-2.10439100	-3.96345900
С	10.42519100	-0.52066800	-2.12207600
H	10.65503900	-0.55160700	-3.19475300
Н	10.97260800	-1.34149900	-1.64542300
H	10.81526900	0.42266300	-1.72920600
C	7.68866000	0.72659100	-2.75919600
Н	7.59609500	1.60272600	-2.11014700

Н	6.67959000	0.43617400	-3.06693900
Н	8.24033000	1.02532700	-3.65903700
С	10.82159300	-0.41324800	1.24527300
Н	11.46825100	-0.25490600	0.37928900
Н	10.81206400	-1.48630700	1.47027900
Н	11.28185800	0.09429100	2.10246600
С	9.13580800	2.00691900	0.33047700
Н	9.65057100	2.66215300	1.04387400
Н	8.14053500	2.42632400	0.15774800
Н	9.68205300	2.05616200	-0.61706900
С	8.39230700	0.32251700	2.79630400
Н	8.70918100	-0.56275000	3.35830000
Н	7.30137600	0.39745600	2.85086000
Н	8.82018400	1.19473700	3.30679400
Si	4.22113200	-3.01025200	-0.67635000
Si	5.24574100	-2.96464200	2.31343100
Si	8.55105400	-0.72342700	-1.92488100
Si	9.06185200	0.25608500	1.02649900
S	2.09335100	0.82001900	-0.83131000
Si	-4.86830500	-0.63928700	-1.02166900
Si	-6.25011600	0.62356000	0.11898100
С	-3.06923600	-0.10008700	-1.01765200
С	-2.41329400	0.55544600	-2.04388100
Н	-2.91032400	0.82476900	-2.96913300
С	-1.05966800	0.87104300	-1.77453100
Н	-0.41352800	1.41403300	-2.45673000
С	-0.64629100	0.45089700	-0.52708900
C	-5.06405900	-2.52557500	-1.07236100
C	-5.55359500	-3.12639800	-2.26037700
С	-5.74616300	-4.50645600	-2.31390300
Н	-6.12930000	-4.95183800	-3.23075500
C	-5.47025700	-5.33151900	-1.22199300
C	-4.95498500	-4.74011700	-0.07204400
H	-4./0864400	-5.36808100	0./8304/00
C	-4./3246300	-3.361/2300	0.01852100
C	-5.90421500	-2.308/9600	-3.4/865600
H	-6.82554300	-1./3808/00	-3.32020400
H	-5.11905400	-1.5844/400	-3.72549000
П	-0.03743300	-2.95126100	-4.33243600
Ч	-5.13978400	-0.01090700	-1.20/19/00
н	-5 16223200	-7.22024300	-2.27522000
н	-6 80176700	-7 02241200	-1 10523700
C	-4 08636200	-2 84558400	1 27628600
н	-2 99651400	-2 95314500	1 21447900
н	-4 30577100	-1 78638400	1 44245800
н	-4 42502700	-3 40276200	2 15582400
C	-6 08192700	2 48715900	0 45714000
C	-7.45199000	2.77037800	1.16827200
н	-7 73508500	3 82857900	1 07800100
Н	-7.36784900	2.58319500	2.24415400
C	-8.57460100	1.87695600	0.60852500
H	-9.46683700	1.96155600	1.24528800
Н	-8.87291500	2.25833700	-0.37528300
С	-8.10472400	0.39090000	0.48287600
C	-4.34728600	1.27680000	2.81526400
Н	-3.72580300	1.58651100	3.66583200
Н	-5.27179200	0.85269900	3.21883400

Н	-3.81800300	0.47822600	2.28805900
С	-2.98279300	3.11853200	0.83794700
Н	-2.75718200	2.37093800	0.07315100
Н	-2.93838700	4.10580100	0.36791300
Н	-2.18165700	3.06891200	1.58546900
С	-5.05179000	4.22006400	2.83428900
Н	-5.28416700	5.14084100	2.29182900
Н	-5.90430700	3.98651600	3.48232300
Н	-4.19175900	4.42252100	3.48480400
С	-4.63896800	3.12982700	-2.31521100
Н	-3.62832400	3.07354700	-1.90501700
Н	-4.89478400	2.14577900	-2.72335500
Н	-4.63505300	3.85082100	-3.14220200
С	-5.56405400	5.42473400	-0.47736800
Н	-5.58672900	6.08581100	-1.35281200
Н	-6.33122300	5.78234200	0.21961700
Н	-4.58917200	5.54643200	0.00304800
С	-7.55414700	3.82411500	-2.00806800
Н	-7.86186700	2.88716600	-2.47734500
Н	-8.37749300	4.19209400	-1.38612800
Н	-7.39776800	4.55813700	-2.80894100
С	-8.18274300	0.56030700	3.65148900
Н	-7.17831300	0.97111900	3.78156500
Н	-8.89276500	1.39546500	3.63977600
Н	-8.40655900	-0.04319300	4.54050100
С	-10.16819500	-1.17123200	2.31503500
Н	-10.27806600	-1.58169100	3.32691100
Н	-10.89141200	-0.35459400	2.21184500
Н	-10.44147600	-1.96019500	1.60860700
С	-7.21348500	-2.01509400	2.31697700
Н	-7.06100600	-2.56305500	1.38193100
H	-6.23322800	-1.6/0/8500	2.66055200
H	-7.60298900	-2.71724900	3.06436300
C	-10.91643300	-0.10100900	-0.812/8000
H	-11.42845300	-0.69188400	-0.03004000
п	-11 20267200	-0.22757200	-1.77051600
II C	-8 77377000	-0.32737200 -2.32002700	-0.97652500
Ч	-9 24969600	-2 74917000	-1 86677500
н	-7 71083600	-2 57456600	-1 01720400
Н	-9 19882200	-2 82097800	-0 10065700
C	-8.59309100	0.27106900	-2.63109200
H	-9.10350100	1.22762500	-2.78778600
Н	-7.51701200	0.42585300	-2.76041700
Н	-8.93764700	-0.40820200	-3.42120700
Si	-4.63112300	2.77209000	1.68832900
Si	-5.93032100	3.65543100	-1.05391700
Si	-8.38567900	-0.55394900	2.13153500
Si	-9.05944400	-0.45661300	-0.94665000
S	-1.94283000	-0.36869600	0.28797000
E(RB3LYP)	= -6543.40148423	A.U.	1 501047 (Hartman / Dauting)
Sum of ele	correction=	Free Energie	1.50104/ (Hartree/Particle) -6542 042851
Jum OI CIE	ceronice and cherma.	- rice micryre	0012.012001

 Table S7. Atomic Coordinate of syn-3_{opt} Calculated at the B3PW91-D3/6-31G(d) Level.

Atom	X	у	Z	
Si	5.08345900	1.55386000	0.50730300	
Si	5.31067700	-0.62019200	0.32680200	
С	3.28753900	2.10216400	0.54781000	
С	2.59757500	2.57673200	1.64927600	
Н	3.08129700	2.74647500	2.60566300	
С	1.21276200	2.78000600	1.43278600	
Н	0.52067200	3.12930600	2.19225700	
С	0.81551500	2.45911900	0.15050600	
С	6.24476200	2.76279600	-0.37815600	
С	7.24740500	3.42734300	0.37157300	
С	8.13579100	4.29235900	-0.26911200	
Н	8.90527000	4.78978300	0.31925900	
С	8.06996700	4.53227200	-1.64187700	
С	7.05769600	3.90622500	-2.36573800	
Н	6.97293200	4.09853700	-3.43429900	
С	6.14021400	3.04187500	-1.76152700	
С	7.41076900	3.21372700	1.85583500	
Н	7.88596000	2.24984500	2.06580400	
Н	6.44769400	3.21300200	2.37918700	
Н	8.03738200	3.99539000	2.29861000	
С	9.07455000	5.42519700	-2.31939800	
Н	9.38855800	6.24571400	-1.66499200	
Н	8.67224200	5.85936900	-3.24068400	
Н	9.97711900	4.86114800	-2.58956300	
С	5.03782900	2.48010300	-2.61758200	
H	4.16317200	3.14149700	-2.59718000	
H	4.71112000	1.49697100	-2.26331300	
H	5.35485200	2.37838600	-3.66052300	
С	4.14503000	-1.96303000	1.01283000	
С	4.95095600	-3.24980100	0.61856300	
Н	4.67353200	-4.10160100	1.25563900	
Н	4.69640900	-3.55287100	-0.40394500	
С	6.47302100	-3.01816700	0.69170200	
Н	6.99689100	-3.85757100	0.21229000	
Н	6.78022600	-3.03803400	1.74370000	
С	6.88032100	-1.65216100	0.04572600	
С	2.61048700	-1.47979100	-1.72545300	
Н	1.63589800	-1.12089100	-2.07713300	
Н	2.88017400	-2.34965600	-2.33479100	
Н	3.34050500	-0.68572700	-1.91267200	
С	1.18174700	-0.84310800	0.93531100	
Н	1.62934700	0.07162700	1.32747600	
Н	0.66867900	-1.34592000	1.76048100	
Н	0.42158500	-0.54241300	0.20828800	
С	1.73201000	-3.71916900	0.04746700	
Н	1.34536000	-4.05942300	1.01169500	
Н	2.46408600	-4.45429300	-0.30551400	

Н	0.89814100	-3.72571800	-0.66556300
С	3.46113900	-0.24637400	3.62499100
Н	2.50928000	0.15500000	3.26883900
Н	4.24639400	0.47488700	3.37258800
Н	3.40913900	-0.32630200	4.71811300
С	2.48603200	-3.15790700	3.39827300
Н	2.46451600	-3.22890100	4.49303400
Н	2.68796200	-4.16279500	3.00954400
Н	1.48785500	-2.85965700	3.06737400
С	5.35224200	-2.59576900	3.87732300
Н	6.23156200	-1.95711900	3.78181500
Н	5.62610600	-3.61603900	3.58652100
Н	5.07785500	-2.62257300	4.93963800
С	5.97259700	-3.03229200	-2.64346400
Н	4.94581500	-2.66592500	-2.56765500
Н	6.01372900	-4.04376200	-2.22391800
Н	6.21778500	-3.10927700	-3.71044500
С	8.89465900	-2.68352600	-2.15065600
Н	8.94774300	-2.94968100	-3.21397300
Н	9.01373600	-3.60732000	-1.57335600
Н	9.74658800	-2.03267300	-1.93121200
С	7.14445000	-0.23087400	-2.77521400
Н	7.42003500	0.63936500	-2.17390900
Н	6.13043400	-0.06292200	-3.15084200
Н	7.81671200	-0.26980200	-3.64117000
С	9.72547500	-2.35185100	1.14343000
Н	10.24651300	-2.62394900	0.22261700
Н	9.26758500	-3.25923300	1.55434300
Н	10.47902700	-2.01205200	1.86525500
С	9.23940600	0.45250100	-0.02439400
Н	10.08858900	0.83503300	0.55550600
Н	8.54912800	1.28569200	-0.18616400
Н	9.62059300	0.14403000	-1.00342400
С	8.09092800	-0.39892200	2.69063700
Н	8.08633900	-1.25252700	3.37665000
Н	7.14430500	0.14061900	2.79966100
Н	8.90077200	0.26574400	3.01723200
Si	2.44709900	-1.96463400	0.10085700
Si	3.86106600	-1.94408900	2.91406600
Si	7.21666000	-1.86253800	-1.83228400
Si	8.44441400	-0.97314000	0.92091100
S	2.17900500	1.93417700	-0.78495100
Si	-4.81714600	1.51468500	-0.54998700
Si	-5.36291200	-0.60830400	-0.37668800
С	-2.99020400	1.89891400	-0.68723500
С	-2.31564600	2.15975800	-1.86696500
Н	-2.81355400	2.15115100	-2.83124900
С	-0.93297300	2.41940700	-1.70736400
Н	-0.25405300	2.63892500	-2.52507100
С	-0.52330000	2.36741000	-0.39092800
С	-5.79403500	2.73347000	0.52730600
С	-5.78011600	2.67869700	1.94494900
С	-6.68762500	3.44891900	2.67456000
Н	-6.68191600	3.37926200	3.76147400
С	-7.59778100	4.30637200	2.05467300
С	-7.53525000	4.43057600	0.66851900
Н	-8.19767400	5.13418900	0.16610200
С	-6.64108800	3.67840300	-0.09920600

С	-4.75492100	1.88965000	2.71587100
Н	-5.14636700	1.54248800	3.67715800
Н	-4.40222900	1.02054900	2.15466500
Н	-3.87959000	2.51939900	2.92112600
С	-8.61953000	5.06276100	2.85983100
Н	-8.23526200	5.33013500	3.85019500
Н	-8.93128600	5.98323900	2.35509600
Н	-9.51920400	4.45210700	3.01297700
С	-6.56907100	3.97703600	-1.57602900
Н	-6.06077200	4.93666700	-1.73525100
Н	-6.00402200	3.21212500	-2.12070100
Н	-7.56380600	4.04737900	-2.02842300
С	-7.13270400	-1.30048900	-0.39150100
С	-6.84911000	-2.83889400	-0.49706500
Н	-7.69188200	-3.36642400	-0.96611200
Н	-6.75329600	-3.27446400	0.50312100
С	-5.55465800	-3.12884000	-1.28428000
Н	-5.27015200	-4.18248000	-1.15036200
Н	-5.76074400	-3.01050200	-2.35409700
С	-4.39421800	-2.16880700	-0.85916500
С	-6.89548900	-0.88164600	2.75088600
H	-7.19125300	-0.06391500	3.41868800
н	-6 96117700	-1 81582800	3 31961700
н	-5 84616200	-0 71508700	2 48842700
C	-8 93227000	0 76986800	1 22407200
н	-8 22766500	1 59588700	1 08733000
н	-9 70790600	0 84845500	0 45620100
н	-9 41478900	0 91247500	2 19935200
C	-9 33244900	-2 25077900	1 61380600
н	-10 15066200	-2 28379200	0 88991000
н	-8 86886800	-3 24358800	1 64502400
н	-9 76801800	-2 06248700	2 60336800
C	-8 22005800	1 10685800	-2 17492400
н	-8 22030200	1 68713200	-1 24945300
н	-7 34430200	1 41039300	-2 75569000
н	-9 11680000	1 37599900	-2 74716600
C	-9 96588500	-1 38058300	-1 71582900
н	-10 48962500	-1 21403100	-2 66559500
н	-10 00151900	-2 45577600	-1 50599300
и П	-10 53044500	-0.86400600	-0.93332300
C	-7 57387300	-1 52220100	-3 51213000
н	-6 54515000	-1 23002000	-3 73798200
н	-7 63754100	-2 61588700	-3 51471100
н	-8 20896000	-1 15415700	-4 32805600
C	-4 64744600	-3 71300000	1 90827300
ч	-5 40404600	-3 0/325700	2 32152800
и ц	-5 15321000	-4 57918600	1 46658300
и ц	-4 04178300	-4 08234200	2 7/591300
C	-2 30257400	-4.00234200	2.74591500
U U	-2.30237400	-4.20707400	1 12076700
п 11	-1.09422000	-4./1290000 -5 08051000	_0 31517500
11 11	-2.03/89100 1 AEC10700	-3.0030130U	-0.3131/300
п		-3.9843/300	-U.41303300
	-2.52001500	-1.55998900	1.62580900
H	-1.89056000	-0.93965900	0.984/8800
H	-3.19856200	-0.89142000	2.16623300
н	-1.8/039800	-2.04442100	2.36551800
C	-2.89854800	-3.62892900	-3.16612800
Н	-2.39070300	-4.36501700	-2.53775100

Н	-3.85054200	-4.06241700	-3.49323600
Н	-2.28476100	-3.47457600	-4.06257300
С	-1.47373600	-1.29816300	-1.77344800
Н	-0.84990000	-1.17009900	-2.66669700
Н	-1.55240300	-0.32096800	-1.29038100
Н	-0.94557500	-1.97527800	-1.09668100
С	-3.80575600	-0.81647800	-3.67735100
Н	-4.52212300	-1.33789400	-4.32145900
Н	-4.28534000	0.08916100	-3.29170900
Н	-2.96224400	-0.51115800	-4.30930700
Si	-8.05620400	-0.90111300	1.24550300
Si	-8.18485200	-0.75462100	-1.89702200
Si	-3.47623100	-2.87661600	0.67910700
Si	-3.15723600	-1.95725200	-2.31381500
S	-1.87002200	1.98915000	0.64322600
E(RB3LYP) = -6 Zero-point corr Sum of electron	 6543.40538519 ection= ic and thermal	A.U. Free Energie	1.501597 (Hartree/Particle) es= -6542.043832

Table S8. Atomic Coordinate of 4_{opt} Calculated at the B3PW91-D3/6-31G(d) Level.

Atom	х	У	Z	
Si	-0.99466400	-0.63951300	0.04841800	
Si	0.53020700	0.88947600	-0.09714800	
С	-0.80465800	-2.51343600	0.37350000	
С	-2.25639400	-3.00031800	0.04296300	
Н	-2.33838600	-3.22331500	-1.02857500	
Н	-2.48684000	-3.94054300	0.56264100	
С	-3.31771400	-1.94063700	0.39639500	
Н	-3.46146500	-1.94722500	1.48410500	
Н	-4.28618000	-2.23150900	-0.03434600	
С	-2.89676100	-0.50873300	-0.07703100	
Si	0.38525500	-3.41112900	-0.83220200	
Si	-0.32293300	-2.87006000	2.20273500	
Si	-3.45696300	-0.15361600	-1.87724300	
Si	-3.67005900	0.75964900	1.12609400	
С	0.05166300	-2.88479100	-2.62167200	
Н	-0.19563100	-1.82432400	-2.72526000	
Н	-0.77163400	-3.47409000	-3.04060600	
Н	0.94275900	-3.08087800	-3.22782900	
С	0.01781900	-5.27173300	-0.86802500	
Н	0.53118600	-5.70427400	-1.73665800	
Н	-1.05351400	-5.46693800	-0.99468800	
Н	0.35996400	-5.80947300	0.01910200	
С	2.20862700	-3.17379400	-0.38979600	
Н	2.81331300	-3.09639000	-1.30015600	
Н	2.58286200	-4.02362500	0.19098800	
Н	2.38989500	-2.26568400	0.18967700	
С	0.91205200	-1.62343500	2.88938500	

Н	0.45069700	-0.64321500	3.04500500
Н	1.77079300	-1.47137500	2.22886200
Н	1.29204400	-1.97796000	3.85566300
С	0.42103300	-4.59678500	2.44780300
Н	1.36615500	-4.75499300	1.92127600
Н	-0.27757400	-5.38619800	2.14978100
Н	0.61705400	-4.72107400	3.52053300
С	-1.82990300	-2.90256700	3.34759100
Н	-1.49451400	-3.23781900	4.33724600
Н	-2.59169200	-3.61237500	3.00501400
Н	-2.30039700	-1.92651700	3.47453900
С	-3.42743500	-1.70439900	-2.95810700
Н	-3.84896200	-1.44698800	-3.93810200
Н	-4.04583700	-2.50640800	-2.53850900
Н	-2.42275900	-2.09560800	-3.12443100
С	-2.38652900	1.16191000	-2.70364200
Н	-1.45493100	0.71117600	-3.06113700
Н	-2.11794000	1.98211400	-2.02978500
Н	-2 91146600	1 58761200	-3 56767300
C	-5 26948100	0 39573300	-1 98260200
н	-5 46958300	1 37508400	-1 53862800
н	-5 93919900	-0 33450600	-1 51462000
н	-5 53924000	0 45450700	-3 04478900
C	-3 47542600	2 53158900	0 51217000
Ч	-3 80703900	2.33130300	1 288/9500
ч	-1 07964600	2 72037100	-0 38114700
ч	-2 /3910200	2 77648800	0.26538900
C	-5 51442800	0 10813000	1 39240600
ч	-5 8/170100	0.40013000	2 29205900
н	-5 69/85100	-0 65899100	1 56823000
11 U	-6 152/1800	0 72774300	1.50025000
11 C	-2.04400300	0.72774300	2 96037400
U U	-2.94409500 -1.00225100	0.3106000	2.00937400
и И	-1.0000000	-0.17607200	2.00115000
п	-3.49495900	1 52009600	2 41464100
n C	-3.03908800	2 76609000	-0.17020100
C	-0 16971400	2.700000000	-0.1/929100
C	-0.100/1400	3.32920300	0.93529200
U U	-0.30342400	4.9103/200	1 60124900
п	-0.03003000	5.40250000	1.09124000
	-0.03909500	5.59288500	-0.36464100
U U	0.39461600	4.83836300	-1.45/65200
H	0.62115900	5.34591700	-2.39405900
	0.54859300	3.45607800	-1.38666700
	1.05/19100	2.73375500	-2.60526500
H	1.15666000	3.41449600	-3.45685100
H	0.38129700	1.92556500	-2.90192600
H ~	2.03987400	2.28513100	-2.4218/300
C	-0.4890//00	2.93869700	2.283/4400
H	0.24530800	3.26053/00	3.03309/00
Н	-0.50085900	1.84709800	2.25757700
Н	-1.47368700	3.27049100	2.62980300
С	-0.22145600	7.08199200	-0.48345400
Н	-0.36806900	7.55077600	0.49484600
Н	-1.09631400	7.32168500	-1.10157800
Н	0.64704900	7.55291600	-0.95857000
С	2.38006700	0.44402500	-0.13477200
С	3.18557200	0.71813900	1.00172100
С	2.65136900	1.28083900	2.19862600

Н	1.58691400	1.48044900	2.23548800	
С	3.43296400	1.54741600	3.28904400	
Н	2.98555400	1.97328300	4.18341200	
С	4.82456800	1.26048300	3.26653500	
Н	5.43500700	1.47492000	4.13977500	
С	5.38504600	0.70715000	2.14888200	
Н	6.44728600	0.47415700	2.11861200	
С	4.59699700	0.42009000	0.99352600	
С	5.16555100	-0.15467700	-0.14279300	
Н	6.22787900	-0.39342600	-0.14326300	
С	4.40534000	-0.43119900	-1.27854200	
С	5.00058500	-1.02912600	-2.43003900	
Н	6.06150100	-1.26741800	-2.39556000	
С	4.26251800	-1.29691000	-3.54966900	
Н	4.72759300	-1.75158800	-4.42042300	
С	2.87999200	-0.97124400	-3.57408200	
Н	2.29335900	-1.17695500	-4.46549100	
С	2.27750500	-0.40794100	-2.48221500	
Н	1.21712700	-0.17986600	-2.50014400	
С	2.99598900	-0.11647000	-1.28501200	
E(RB3LYP) = Zero-point co	-3258.72457584 rrection=	A.U.	0.888674 (Hartree	e/Particle)
sum or electr	onic and therma	I Free Energie	-325/.9236	24

Table S9. Atomic Coordinate of 5_{opt} Calculated at the B3PW91-D3/6-31G(d) Level.

5 (R = SiMe₃)

Atom	х	У	Z	
Si	-0.68488700	-0.86646600	0.03085100	
Si	0.26295000	1.08901900	0.09358700	
С	0.05836300	-2.53644200	0.59528200	
С	-1.27355600	-3.25183200	1.02417200	
Н	-1.15503800	-4.34115900	1.05220000	
Н	-1.55138700	-2.95070800	2.04324900	
С	-2.42185300	-2.86162700	0.07991500	
Н	-3.36104800	-3.32383900	0.40637900	
Н	-2.20843600	-3.27985600	-0.91431700	
С	-2.54554200	-1.29837100	-0.00064300	
С	2.12937500	1.20653700	-0.22985300	
С	2.78742300	0.56814600	-1.31081100	
С	2.11120900	-0.08148000	-2.38678500	
Н	1.02645100	-0.07986300	-2.37807800	
С	2.79432300	-0.69157700	-3.40431100	
Н	2.24555200	-1.17119000	-4.21005600	
С	4.21486200	-0.71246200	-3.40942100	
Н	4.74307200	-1.21696000	-4.21434800	
С	4.91150400	-0.08829700	-2.41197600	
Н	5.99699300	-0.06952600	-2.39005500	
С	4.23321100	0.59081200	-1.35365100	
С	2.93888000	1.91403400	0.69186700	

С	2.40812400	2.62904100	1.80557400
Н	1.33125200	2.65233000	1.94431300
С	3.22139800	3.28567500	2.68919800
Н	2.78722900	3.82560100	3.52652000
С	4.63326500	3.26210300	2.52359000
Н	5.26586900	3.78532300	3.23598000
С	5.19046300	2.57832300	1.47855300
Н	6.26457500	2.53264200	1.32549300
C	4 37167700	1 88637800	0 53534100
C	-0 66979800	2 70962900	-0.18247500
C	-0.70102800	3 31163700	-1 16977600
C	-1 /0956500	1 10301200	-1 66420900
U U	_1 42272000	4.02002400	-2 65772900
n C	-1.43272900	4.93002400 5.11642200	-2.03773800
	-2.10/46/00	J.11045200	-0.62446500
	-2.05/98100	4.53229300	1 46405000
H	-2.58182600	5.00/00/00	1.46405800
C	-1.34688300	3.35003500	0.8/926100
C	-0.02087800	2.66973900	-2.64905000
Н	-0.12567000	3.28172700	-3.55052600
Н	-0.45844100	1.68554800	-2.85923400
Н	1.04867800	2.51590800	-2.47027700
C	-2.88696700	6.37833900	-0.87877400
Н	-3.31357900	6.78393800	0.04391700
Н	-3.71273300	6.19527100	-1.57773800
Н	-2.25229400	7.15239000	-1.32676200
С	-1.33257600	2.84598100	2.30099400
Н	-0.89354500	3.59577700	2.97113200
Н	-0.75687500	1.92084200	2.40009600
Н	-2.34667200	2.64094600	2.66154700
Si	0.94561300	-3.55786200	-0.78717500
C	0.61716600	-5.40598400	-0.51762900
Н	-0.42975800	-5.65995100	-0.72179200
Н	0.86260200	-5.76000700	0.48745700
Н	1.23180300	-5.97115200	-1.22963000
C	2.81694700	-3.30615600	-0.85375700
Н	3.19980000	-3.95305500	-1.65356600
Н	3.34158800	-3.57312000	0.06767900
Н	3.08700700	-2.28055600	-1.11781900
С	0.33551600	-3.23677500	-2.54385900
Н	1.01635700	-3.74355300	-3.23940100
Н	0.32589700	-2.17743100	-2.80573400
Н	-0.66704800	-3.63965900	-2.71011500
Si	1.24594500	-2.42939200	2.10605900
C	2.76824700	-1.33819900	1.86894100
Н	2.55904900	-0.32790900	2.23416100
Н	3.12676500	-1.24812100	0.84317000
Н	3.58895100	-1.74328700	2.47418700
С	1.79078200	-4.18277300	2.58787400
Н	2.34572600	-4.12692100	3.53279400
Н	2.43952300	-4.66940300	1.85357000
Н	0.92361700	-4.83257400	2.75619600
С	0.43153200	-1.76153800	3.67232000
Н	1.19778700	-1.78338600	4.45830700
Н	-0.41578800	-2.35572500	4.02722400
Н	0.10901600	-0.72397400	3.55693500
Si	-3.38721800	-0.77264900	-1.64748700
С	-2.57220000	-1.53926800	-3.16858900
Н	-3.15396300	-1.21820700	-4.04229300

Н	-2.56538000	-2.63285000	-3.16632900	
Н	-1.54575100	-1.18849400	-3.30934700	
С	-3.38806100	1.09209000	-1.96088800	
Н	-2.63933400	1.62543000	-1.37177600	
Н	-4.35956700	1.54528200	-1.74186500	
Н	-3.16498100	1.28002000	-3.01776100	
С	-5.17589600	-1.39862400	-1.68267800	
Н	-5.82259000	-0.88424200	-0.96451700	
Н	-5.23258200	-2.47468700	-1.48028000	
Н	-5.59306300	-1.22806000	-2.68299800	
Si	-3.60036500	-0.63650600	1.46946600	
С	-2.68441900	-0.46739300	3.10740900	
Н	-3.33878300	0.04821400	3.82186000	
Н	-1.76520100	0.11311800	3.01439200	
Н	-2.42773100	-1.43870400	3.53860100	
С	-5.01163900	-1.84649300	1.84072300	
Н	-4.63281800	-2.76221100	2.30990100	
Н	-5.59581300	-2.13333200	0.96205700	
Н	-5.69506000	-1.37484900	2.55811400	
С	-4.35516800	1.06184600	1.12361500	
Н	-5.16002300	1.02629700	0.38309800	
Н	-3.61812000	1.79466100	0.78196900	
Н	-4.78838500	1.43381100	2.06073200	
Ν	4.99022600	1.21878200	-0.44662300	
E(RB3LYP) = -3	274.75598268	A.U.		· · · ·
Zero-point corr	ection=		0.876653 (Hartre	e/Particle)
Sum of electron	irc and therma.	r rree ruergie	-32/3.96/4	ЭT

Table S10. Atomic Coordinate of $syn-6_{opt}$ Calculated at the B3PW91-D3/6-31G(d) Level.

syn-6 (R = SiMe₃)

Atom	X	У	Z	
Si	-4.56729000	-0.64852200	-0.31120800	
Si	-3.34435200	1.04733800	0.25201500	
С	-4.03477100	-2.44074100	-0.70973800	
С	-5.38768600	-3.01252700	-1.25355900	
Н	-5.46965600	-2.81008600	-2.32926500	
Н	-5.42716700	-4.10523200	-1.15082600	
С	-6.60596800	-2.38363500	-0.55199000	
Н	-6.70319400	-2.84187900	0.44031100	
Н	-7.52285600	-2.65113400	-1.09584500	
С	-6.46658600	-0.83041000	-0.41062000	
Si	-2.75451600	-2.59453900	-2.12650100	
Si	-3.42474300	-3.35796000	0.87355100	
Si	-7.15993300	0.10184000	-1.93646200	
Si	-7.39654100	-0.31028300	1.17582600	
С	-3.95849200	2.72263900	0.89982600	
С	-4.46153700	2.89377300	2.21045500	
С	-4.84621700	4.16623900	2.65074200	
Н	-5.23710900	4.27109300	3.66202300	

С	-4.74899900	5.29039000	1.84023000
С	-4.23182400	5.12073900	0.55347600
Н	-4.13498500	5.98924600	-0.09619100
С	-3.83351700	3.87466200	0.07552000
С	-3.25433300	3.79618600	-1.31152700
Н	-3.30974600	4.76437300	-1.81941700
Н	-3.78920400	3.06614300	-1.92718200
Н	-2.20161500	3.49310800	-1.28843900
С	-4.61580300	1.76962900	3.20194600
Н	-3.90496700	1.88266800	4.03042700
Н	-4.45364500	0.79357100	2.73956500
Н	-5.62199400	1.76713200	3.63422800
С	-5.19687800	6.64637200	2.31519000
Н	-5.37097600	6.65912000	3.39588000
Н	-6.13250700	6.94412000	1.82434300
Н	-4.45200700	7.41616900	2.08225200
C	-1.44729900	1.01291000	0.08318000
C	-0.79502700	1.05046600	-1.17356600
C	-1.52513200	1.10663400	-2.39851700
Н	-2.60762500	1.14181500	-2.33135000
С	-0.91027000	1.09458700	-3.61966600
Н	-1.50597200	1.13789800	-4.52737300
С	0.50207200	0.99995000	-3.69780900
Н	0.99480900	0.95616200	-4.66562100
С	1.24160500	0.95912700	-2.54898400
Н	2.32008600	0.86342300	-2.60377800
С	0.64773000	1.01227600	-1.25274000
С	1.44730200	1.01286800	-0.08321100
С	0.79503600	1.05045700	1.17353300
С	1.52514300	1.10663600	2.39848700
Н	2.60763900	1.14175600	2.33132000
С	0.91028100	1.09469500	3.61963500
Н	1.50598600	1.13800800	4.52734000
C	-0.50206800	1.00015600	3.69778100
Н	-0.99480900	0.95645000	4.66559600
С	-1.24160200	0.95930800	2.54895900
Н	-2.32008600	0.86367000	2.60375300
C	-0.64772500	1.01233500	1.25270700
Si	3.34434800	1.04730900	-0.25208300
Sı	4.56/31000	-0.64848000	0.31129400
C	3.95843000	2./2266000	-0.89984000
C	4.03477300	-2.440/1300	0./09/4500
C	6.46661000	-0.83039700	0.41064600
	4.4613/900	2.89382400	-2.21049100
	3.83354200	3.8/46/100	-0.07549000
	J. 38/69500 2 75/52/00	-3.01251700	1.25355300 2.12652700
SI	2.75453400	-2.59454700	2.12053/00
S1 C	5.42476200	-3.33792000	-0.07337600
	7 150079000	-2.38382400	1 02647500
51	7.13997000	-0.21024700	_1 17500100
C 2T	1 84604700	-U.JIUZ40UU A 16620400	-2 65078800
C	4.04004/00	4.10029400 1 76060000	-2.000/0000
C	01330700 1 22182700	5 1207/200	-0 553/5000
C	3 251100400	3 79619200	1 31161100
ч	5 46967200	-2 8100800	2 32026000
н	5 42716100	-4 10522100	1 15081100
н	6.70322900	-2.84184500	-0.44031000

Н	7.52286700	-2.65113200	1.09586000
Н	5.23687300	4.27115900	-3.66209300
С	4.74889600	5.29042600	-1.84025000
Н	3.90465900	1.88272200	-4.03042300
Н	4.45345500	0.79362500	-2.73962000
Н	5.62172500	1.76720600	-3.63436700
Н	4.13507200	5.98924000	0.09624900
Н	3.31001900	4.76436400	1.81951900
Н	3.78937200	3.06609800	1.92719200
Н	2.20174900	3.49319400	1.28861800
С	5.19660500	6.64645500	-2.31523400
Н	5.37221900	6.65879500	-3.39568200
Н	6.13132100	6.94506500	-1.82318200
Н	4.45089100	7.41588000	-2.08374000
С	-6.87915700	-0.85195100	-3.54389600
Н	-5.82436100	-0.94831400	-3.80565000
Н	-7.31899500	-1.85537700	-3.50652800
Н	-7.37468800	-0.30872800	-4.35852100
С	-6.38693500	1.81300500	-2.12443500
Н	-6.23182500	2.32239200	-1.16765900
Н	-5.41068900	1.72639300	-2.61266700
Н	-7.02442500	2.44930900	-2.75057300
С	-9.04562500	0.29656400	-1.87860100
Н	-9.40297000	0.96620200	-1.09096300
Н	-9.36862400	0.71677300	-2.83962300
Н	-9.54753100	-0.67009500	-1.75831700
С	-2.77179000	-4.35109000	-2.84051100
Н	-2.21164900	-4.34311700	-3.78459800
Н	-2.30851100	-5.09549000	-2.18870900
Н	-3.79095700	-4.68286700	-3.07053300
С	-3.24839800	-1.52517300	-3.60981200
Н	-2.36559200	-1.36227500	-4.23826400
Н	-4.00033200	-2.03786200	-4.21982200
Н	-3.64081600	-0.54369500	-3.32869400
С	-0.99356600	-2.18528800	-1.58147700
Н	-0.50136900	-1.55722100	-2.33043600
Н	-0.96105300	-1.64167300	-0.63444400
Н	-0.39375800	-3.09380900	-1.46591400
С	-2.54236700	-2.21562500	2.08427700
Н	-3.23566500	-1.55303400	2.61080800
Н	-2.00900900	-2.81615000	2.83146500
Н	-1.80500800	-1.58108300	1.58521000
С	-4.84486000	-4.21521300	1.78617000
Н	-5.42332900	-4.87462800	1.12906500
Н	-4.41076000	-4.84117300	2.57602000
Н	-5.53342700	-3.51598100	2.26429200
C	-2.22329900	-4.78172400	0.51430100
Н	-1.31165600	-4.47785600	-0.00715200
Н	-1.92215000	-5.20342700	1.48200300
Н	-2.69709700	-5.58619400	-0.05813500
C	-9.13570000	-1.06496100	1.21991300
H	-9.51295200	-1.00194900	2.24874900
H	-9.85585100	-0.56072400	0.57169800
H	-9.11681800	-2.12644600	0.94609100
C	-7.55482400	1.56195400	1.33192000
Н	-/.97413200	1.81830300	2.31256700
Н	-6.59482600	2.07580500	1.23682700
Н	-8.22490100	1.97377700	0.57001300

С	-6.57048700	-1.04003300	2.71875400	
Н	-6.96340500	-2.04409200	2.91364800	
H	-5.48210700	-1.11119400	2.64088700	
H	-6.80549000	-0.42589800	3.59571400	
С	2.54230300	-2.21562300	-2.08427200	
H	1.80495800	-1.58106100	-1.58519900	
H	3.23558700	-1.55304300	-2.61082900	
H	2.00892100	-2.81615100	-2.83143800	
С	2.22341800	-4.78177600	-0.51436600	
H	1.92230300	-5.20348800	-1.48207400	
H	2.69726600	-5.58621800	0.05806400	
H	1.31175000	-4.47797300	0.00707800	
С	4.84491500	-4.21505600	-1.78625500	
H	5.42347700	-4.87443800	-1.12920400	
Н	4.41083500	-4.84103600	-2.57610300	
Н	5.53338300	-3.51574600	-2.26439800	
С	0.99355800	-2.18540300	1.58152500	
Н	0.50131100	-1.55738200	2.33048200	
Н	0.96099800	-1.64179900	0.63448300	
Н	0.39381700	-3.09397400	1.46598700	
С	3.24837600	-1.52511000	3.60981100	
Н	2.36555400	-1.36214400	4.23822500	
Н	4.00027000	-2.03779100	4.21987700	
Н	3.64084000	-0.54366400	3.32864900	
С	2.77190600	-4.35107600	2.84059900	
Н	2.21174700	-4.34310300	3.78467600	
Н	2.30868700	-5.09553400	2.18882000	
Н	3.79108800	-4.68278200	3.07065700	
С	6.57045600	-1.03988400	-2.71875800	
Н	6.96333600	-2.04394600	-2.91371200	
Н	5.48207400	-1.11100100	-2.64087600	
Н	6.80546800	-0.42570800	-3.59568700	
С	7.55490200	1.56199100	-1.33180300	
Н	7.97429600	1.81836200	-2.31240800	
Н	6.59490300	2.07585200	-1.23678100	
Н	8.22491600	1.97378500	-0.56982600	
С	9.13568200	-1.06499400	-1.21995800	
Н	9.51292800	-1.00190400	-2.24879100	
Н	9.85585400	-0.56084000	-0.57170300	
Н	9.11676100	-2.12650100	-0.94622500	
С	6.38696000	1.81300300	2.12447400	
Н	7.02453600	2.44935100	2.75048100	
Н	6.23170400	2.32233200	1.16769000	
Н	5.41079100	1.72640600	2.61286600	
С	9.04566600	0.29661700	1.87857900	
Н	9.40298800	0.96622500	1.09090500	
Н	9.36866900	0.71688300	2.83957500	
Н	9.54759100	-0.67003600	1.75833300	
С	6.87929600	-0.85196900	3.54391200	
Н	5.82451900	-0.94845600	3.80569100	
Н	7.31925600	-1.85534000	3.50653800	
H	7.37477900	-0.30868100	4.35852300	
E(RB3LYE	(2) = -5978.11368657	A.U.		
Zero-poi	nt correction=		1.583095 (Hartr	ee/Particle)
Sum of e	electronic and thermal	. Free Energi	es= -5976.666	036

Table S11. Atomic Coordinate of anti-6_{opt} Calculated at the B3PW91-D3/6-31G(d) Level.

Atom	x	У	Z	
Si	-4.77180900	0.58789100	0.25416700	
Si	-3.24313900	-0.83201800	-0.31767200	
С	-4.61553600	2.46094300	0.60436200	
С	-6.03197900	2.74234500	1.21348200	
Н	-6.01208300	2.56435400	2.29634200	
Н	-6.31420000	3.79665200	1.08862700	
С	-7.12015600	1.84071200	0.59855000	
Н	-7.36982900	2.23266700	-0.39540600	
Н	-8.04214400	1.92106800	1.19141000	
С	-6.65177500	0.35140500	0.48189100	
Si	-3.32554200	2.92842800	1.94404800	
Si	-4.30980500	3.46162700	-1.01346100	
Si	-7.02969900	-0.65579100	2.07027100	
Si	-7.52678600	-0.42591500	-1.02878800	
С	-3.47532300	-2.62127700	-0.90904100	
С	-3.99216200	-2.94442200	-2.18507600	
С	-4.07410500	-4.28324200	-2.58768800	
Н	-4.48179000	-4.50625900	-3.57284900	
С	-3.65569300	-5.32794800	-1.77334200	
С	-3.12649300	-5.00353200	-0.52162400	
Н	-2.78131300	-5.80463300	0.13023300	
С	-3.02439000	-3.68642600	-0.08104800	
С	-2.40627200	-3.43411100	1.26766400	
Н	-2.19707800	-4.37360700	1.78932300	
Н	-3.06731500	-2.83899200	1.90586900	
Н	-1.45968500	-2.89016900	1.17667300	
С	-4.47237900	-1.91886900	-3.17863200	
Н	-3.81749900	-1.89504300	-4.05894600	
Н	-4.50486200	-0.91689100	-2.74563000	
Н	-5.48143000	-2.15933600	-3.52978600	
С	-3.77440100	-6.76403100	-2.20733800	
Н	-4.03238200	-6.84604700	-3.26799400	
Н	-4.55276300	-7.28401900	-1.63413800	
Н	-2.83669600	-7.30791000	-2.04340400	
С	-1.40666800	-0.34141900	-0.26711700	
С	-0.70264400	-0.16224900	-1.48274100	
C	-1.35566800	-0.29240500	-2.74496000	
Н	-2.42030200	-0.49543100	-2.74216100	
С	-0.69375800	-0.14548900	-3.93125800	
Н	-1.22981600	-0.24869000	-4.87106800	
C	0.69460300	0.14427800	-3.93116300	
H	1,23085700	0.24715900	-4.87089800	
C	1.35626500	0.29160700	-2.74477800	
Н	2.42089700	0.49464000	-2.74182800	

С	0.70297900	0.16189500	-1.48265200
С	1.40675200	0.34148700	-0.26694800
С	0.69841800	0.18791100	0.94934100
С	1.32923700	0.39618800	2.21192100
Н	2.37272300	0.69301200	2.20322000
С	0.67516500	0.21430200	3.39871200
Н	1.19639200	0.38236200	4.33721400
С	-0.67582100	-0.21285700	3.39865400
Н	-1.19724200	-0.38056300	4.33711100
С	-1.32965800	-0.39517500	2.21179900
Н	-2.37314500	-0.69198700	2.20299800
С	-0.69858700	-0.18738300	0.94926700
Si	3.24324000	0.83205200	-0.31727900
Si	4.77182600	-0.58784400	0.25481100
С	3.47546900	2.62115800	-0.90911400
С	4.61537400	-2.46075000	0.60562500
С	6.65176700	-0.35140000	0.48270600
С	3.99243500	2.94402000	-2.18516700
С	3.02437000	3.68648700	-0.08144200
С	6.03169800	-2.74198200	1.21509000
Si	3.32513000	-2.92770800	1.94528000
Si	4.30999000	-3.46191700	-1.01195000
С	7.11998900	-1.84072000	0.59983700
Si	7.02952000	0.65611500	2.07094100
Si	7.52699100	0.42535300	-1.02816000
С	4.07431900	4.28274100	-2.58811700
С	4.47284500	1.91824800	-3.17840400
С	3.12639500	5.00348500	-0.52235800
С	2.40617400	3.43448100	1.26729500
Н	6.01168700	-2.56345500	2.29786300
Н	6.31387100	-3.79636700	1.09077400
Н	7.36959900	-2.23303800	-0.39399500
Н	8.04196100	-1.92099300	1.19273100
Н	4.48210200	4.50553100	-3.57328800
С	3.65570700	5.32762300	-1.77410200
Н	3.81813800	1.89422200	-4.05884000
Н	4.50523900	0.91637100	-2.74516100
Н	5.48196300	2.15863700	-3.52941900
Н	2.78107000	5.80472700	0.12925000
Н	2.19690000	4.37410100	1.78869900
Н	3.06721500	2.83956300	1.90569400
Н	1.45961900	2.89047000	1.17639300
С	3.77433500	6.76360200	-2.20846400
Н	4.03225100	6.84535900	-3.26915500
Н	4.55271400	7.28376100	-1.63544300
Н	2.83662100	7.30748800	-2.04461000
С	3.16400200	-2.57670100	-2.21681600
Н	2.24126400	-2.22958400	-1.74229800
Н	3.64296000	-1.70068800	-2.66499400
Н	2.88411300	-3.26311200	-3.02566600
C	3.56199500	-5.17554400	-0.69666700
Н	3.45701500	-5.66968200	-1.67108000
Н	4.21780500	-5.80133500	-0.08186600
Н	2.57152800	-5.15118800	-0.23391400
С	5.92383700	-3.86949500	-1.91342700
Н	6.63924500	-4.38653800	-1.26352900
Н	5.68559800	-4.54949400	-2.74111400
Н	6.41621900	-2.99430300	-2.33996700

С	3.49360500	-1.80477400	3.46133100
Н	2.56274700	-1.83906600	4.03789200
Н	4.29903200	-2.16649900	4.11017800
Н	3.69314700	-0.75875800	3.21259500
С	1.54147700	-2.93584000	1.31064300
Н	0.87627200	-2.49175400	2.05937700
Н	1.40895900	-2.36577600	0.38792600
Н	1.20022300	-3.95998200	1.12488100
С	3.70273300	-4.64375500	2.66063400
Н	3.11918700	-4.76245100	3.58296700
Н	3.44032500	-5.46992100	1.99609400
Н	4.76019200	-4.74415500	2.93162600
С	5.87621600	2.13872800	2.25864400
Н	5.66828400	2.64390000	1.30963800
Н	4.91670300	1.81471000	2.67508600
Н	6.31509300	2.87197800	2.94654500
С	6.89535400	-0.39684700	3.63480500
Н	5.87877400	-0.73788500	3.83567100
Н	7.55296900	-1.27303100	3.59572400
Н	7.21533100	0.21321300	4.48902400
С	8.82008300	1.27904200	2.13142200
Н	9.05774800	2.03723400	1.37974500
Н	8.98412100	1.73076100	3.11808800
Н	9.53619000	0.45646300	2.02461800
С	7.26281000	2.29025100	-1.12194000
Н	7.66730200	2.67458200	-2.06633100
Н	6.20619100	2.56680500	-1.07695900
Н	7.77451200	2.81399700	-0.30787200
С	9.39068200	0.07881900	-0.98647500
Н	9.79993400	0.26876000	-1.98705100
Н	9.94321200	0.70106900	-0.27895800
Н	9.59463800	-0.97152600	-0.74688700
С	6.97036600	-0.39812300	-2.64282000
Н	7.57969000	-1.28735700	-2.83859600
Н	5.91856700	-0.69893400	-2.64334300
Н	7.12391900	0.28896800	-3.48304400
С	-3.56176500	5.17529300	-0.69848200
Н	-3.45639600	5.66910300	-1.67302000
Н	-4.21772000	5.80134900	-0.08410200
Н	-2.57146000	5.15099100	-0.23538400
С	-3.16357200	2.57603300	-2.21782300
Н	-2.24095600	2.22902200	-1.74298900
Н	-3.64245500	1.69990000	-2.66585400
Н	-2.88347700	3.26219700	-3.02681200
С	-5.92341900	3.86908300	-1.91541000
Н	-6.63896600	4.38629000	-1.26579500
Н	-5.68493700	4.54890800	-2.74317100
Н	-6.41573000	2.99383300	-2.34190700
С	-3.70335000	4.64470500	2.65873600
Н	-3.11990300	4.76377100	3.58108500
Н	-3.44092000	5.47063800	1.99391200
Н	-4.76084300	4.74515100	2.92957900
С	-1.54180600	2.93650600	1.30963800
Н	-0.87665600	2.49268600	2.05857800
Н	-1.40915500	2.36618500	0.38710000
Н	-1.20059500	3.96061400	1.12360800
С	-3.49413300	1.80600600	3.46046800
Н	-2.56334400	1.84058100	4.03712600
		~	

Н	-4.29966500	2.16789300	4.10909100
H	-3.69355600	0.75988300	3.21208500
С	-6.97025800	0.39712200	-2.64371000
Н	-7.12357500	-0.29032100	-3.48369000
H	-7.57979900	1.28612200	-2.83986200
Н	-5.91853500	0.69819800	-2.64426700
С	-9.39053800	-0.07971700	-0.98719700
Н	-9.79979100	-0.27020000	-1.98766900
H	-9.94291500	-0.70174800	-0.27936300
Н	-9.59468700	0.97069800	-0.74808000
С	-7.26232100	-2.29080200	-1.12193500
Н	-7.66674300	-2.67552300	-2.06619800
Н	-6.20566300	-2.56718000	-1.07683700
Н	-7.77395400	-2.81434000	-0.30768700
С	-8.82018800	-1.27896300	2.13042100
Н	-9.05756900	-2.03728400	1.37878200
Н	-8.98438800	-1.73057600	3.11710800
Н	-9.53638900	-0.45650200	2.02333500
С	-6.89604400	0.39745300	3.63399100
Н	-5.87955700	0.73864800	3.83505000
Н	-7.55376100	1.27354600	3.59460700
Н	-7.21615400	-0.21250200	4.48823500
С	-5.87623600	-2.13821800	2.25847600
Н	-6.31515200	-2.87140400	2.94641800
Н	-5.66803800	-2.64353000	1.30960000
Н	-4.91685400	-1.81399000	2.67505900
E(RB3LYP) = -59 Zero-point corr Sum of electron	 978.10979279 ection= ic and thermal	A.U. Free Energie	1.583234 (Hartree/Particle) s= -5976.663305

Table S12. Atomic Coordinate of 7_{opt} Calculated at the B3PW91-D3/6-31G(d) Level.

Atom	х	У	Z	
Si	0.94762800	-0.00492000	-0.00021800	
Si	-1.22144300	0.00570400	-0.00080900	
Si	1.93199900	2.85565300	-1.12743400	
Si	2.22231500	2.17074400	1.92253500	
Si	2.19913700	-2.19401900	-1.92296400	
Si	1.90422700	-2.87432400	1.12755200	
С	2.18848000	1.44877300	0.14331300	
С	3.52657700	0.72118000	-0.21891000	
Н	3.68916500	0.75848400	-1.30354000	
Н	4.38940400	1.23222400	0.23113700	
С	3.51943600	-0.75656000	0.21659800	
Н	3.68285400	-0.79534000	1.30105300	
Н	4.37664400	-1.27621400	-0.23432900	
С	2.17379000	-1.47085400	-0.14417900	
С	3.51301800	3.88438300	-1.33118500	
Н	4.39629800	3.24284600	-1.43265400	

Н	3.69731000	4.58848000	-0.51690800
Н	3.42623700	4.46467100	-2.25885500
С	0.52350200	4.01316800	-0.64459600
Н	0.32092200	4.71156100	-1.46592000
Н	0.77320100	4.60920900	0.23912200
Н	-0.40460200	3.47847700	-0.42805000
С	1.65484700	2.17047800	-2.87156700
Н	1.02795200	1.27503200	-2.89845200
Н	2.61912700	1.93140100	-3.33329300
Н	1.18089000	2.93503200	-3.49853000
С	3.10696300	3.84661600	2.02059700
Н	3.17542600	4.12201000	3.08082800
Н	2.59497900	4.66201800	1.50236000
Н	4.12996700	3.78428500	1.63278600
С	0.48703600	2.36842500	2.63402800
Н	0.12544000	1.40285900	3.00229800
Н	-0.23809000	2.73229400	1.89877000
Н	0.50155500	3.07050900	3.47674100
С	3.23523100	1.11126600	3.11687900
Н	3.28672000	1.63671200	4.07896400
Н	4.26475300	0.97207900	2.76693000
Н	2.79739500	0.12979300	3.30153300
С	3.21974300	-1.14398800	-3.11904900
Н	3.26496700	-1.66999400	-4.08114400
Н	4.25102700	-1.01403300	-2.77075100
Н	2.79042400	-0.15864200	-3.30311600
С	3.06905200	-3.87762000	-2.02073600
Н	2.54992200	-4.68831500	-1.50219500
Н	4.09261300	-3.82425400	-1.63304100
Н	3.13494400	-4.15394100	-3.08088700
С	0.46140400	-2.37722700	-2.63253600
Н	0.46851100	-3.08249800	-3.47268400
Н	0.10894500	-1.40959200	-3.00420900
Н	-0.26679000	-2.73134000	-1.89556100
C	1.63394400	-2.18578300	2.87145800
Н	1.01675900	-1.28359800	2.89795100
Н	2.60054700	-1.95710700	3.33358100
Н	1.15140500	-2.94503900	3.49830700
C	0.48460500	-4.01883000	0.64612100
Н	0.27662000	-4.71525600	1.46777000
Н	0.72805300	-4.61721700	-0.23775000
Н	-0.43890300	-3.47590200	0.43039600
С	3.47517300	-3.91839600	1.33115400
Н	4.36475700	-3.28558300	1.43229000
Н	3.65225500	-4.62432500	0.51686300
Н	3.38292300	-4.49773300	2.25889000
С	-2.29904100	1.56973600	-0.06487400
С	-2.45443400	2.35455000	-1.23079600
С	-3.30797300	3.46532800	-1.21800300
Н	-3.40396600	4.05790500	-2.12703400
С	-4.02304000	3.83645600	-0.08618200
С	-3.88994100	3.04155600	1.05535100
Н	-4.45537800	3.30063400	1.94928000
С	-3.06046800	1.92315100	1.08302700
С	-1.73945400	2.07505100	-2.52608300
H	-2.45528000	1.88940800	-3.33601000
H	-1.08111500	1.20824700	-2.44486300
Н	-1.12717800	2.93304300	-2.82212200

С	-4.90244900	5.05772500	-0.07441000				
Н	-5.10065300	5.42281300	-1.08730000				
Н	-4.42945500	5.87487500	0.48569200				
Н	-5.86541100	4.85225700	0.40725800				
С	-3.02918500	1.08960300	2.33572700				
Н	-3.56296000	1.58159500	3.15525800				
Н	-2.00414200	0.89994200	2.66780600				
Н	-3.50174200	0.11516400	2.16403000				
С	-2.31540600	-1.54687800	0.06444400				
С	-3.08165500	-1.89209800	-1.08275600				
С	-3.92353000	-3.00117000	-1.05408500				
Н	-4.49263500	-3.25409500	-1.94744900				
С	-4.06446000	-3.79432400	0.08771700				
С	-3.34416200	-3.43106500	1.21877300				
Н	-3.44587600	-4.02239500	2.12799300				
С	-2.47835600	-2.32981300	1.23060800				
С	-3.04196800	-1.05940200	-2.33578700				
Н	-3.58294300	-1.54509800	-3.15435100				
Н	-2.01514400	-0.88251500	-2.66944700				
Н	-3.50226100	-0.07917000	-2.16381400				
С	-4.95758600	-5.00560800	0.07701300				
Н	-4.49428300	-5.82822500	-0.48318900				
Н	-5.91854000	-4.78943500	-0.40397700				
Н	-5.15911600	-5.36811200	1.09017400				
С	-1.75936600	-2.05782300	2.52526900				
Н	-2.47244900	-1.86241900	3.33531700				
Н	-1.09049600	-1.19928100	2.44269100				
Н	-1.15755400	-2.92294000	2.82203700				
E(RB3LYP) = -	3069.46480109	A.U.	0.878848 (Uartroo/Particle)				
Zero-point correction= U.8/8848 (Hartree/Particle) Sum of electronic and thermal Free Energies= -3068 672228							

Table S13. Transition Energy, Wavelength, and Oscillator Strengths of the Electronic Transition of 1_{opt} Calculated at the TD-B3LYP/6-31+G(d) Level (The 164th Orbital is Highest Occupied π (Si=Si) Orbital Shown in Figure 3 in the Main Text)

Excited State 164 ->165 164 ->166	1:	Singlet-A -0.21995 0.66230	3.0142 eV	411.33 nm	f=0.0139	<s**2>=0.000</s**2>
Excited State 164 ->165 164 ->167	2:	Singlet-A -0.44875 0.53400	3.1324 eV	395.81 nm	f=0.0871	<s**2>=0.000</s**2>
Excited State 164 ->165 164 ->166 164 ->167	3:	Singlet-A 0.49059 0.22218 0.44616	3.4079 eV	363.82 nm	f=0.2347	<s**2>=0.000</s**2>
Excited State 164 ->169	4:	Singlet-A 0.70465	3.7976 eV	326.48 nm	f=0.0019	<s**2>=0.000</s**2>
Excited State 164 ->168	5:	Singlet-A 0.70055	3.9515 eV	313.77 nm	f=0.0204	<s**2>=0.000</s**2>

4.2055 eV 294.81 nm f=0.0035 <S**2>=0.000 Excited State 6: Singlet-A 0.66847 164 ->170 Excited State 7: Singlet-A 4.2686 eV 290.46 nm f=0.0064 <S**2>=0.000 -0.36284 164 ->171 164 ->172 0.56205 164 ->178 0.12209 Excited State 8: Singlet-A 4.2943 eV 288.72 nm f=0.0045 <S**2>=0.000 164 ->171 0.59545 164 ->172 0.36360 Excited State 9: Singlet-A 4.3592 eV 284.42 nm f=0.0310 <S**2>=0.000 161 ->165 0.12010 163 ->165 0.68311 Excited State 10: Singlet-A 4.4298 eV 279.89 nm f=0.0147 <S**2>=0.000 164 ->170 -0.17552 0.16886 164 ->172 164 ->174 0.35775 164 ->175 -0.20661 164 ->176 0.32457 164 ->177 0.10984 164 ->178 -0.30498 164 ->181 -0.12038 Excited State 11: 4.5062 eV 275.14 nm f=0.0034 <S**2>=0.000 Singlet-A 0.58669 161 ->165 -0.17742 162 ->165 163 ->165 -0.11096 164 ->173 -0.28279 Excited State 12: Singlet-A 4.5200 eV 274.30 nm f=0.0076 <S**2>=0.000 161 ->165 0.27513 162 ->165 -0.10233 164 ->173 0.58756 164 ->174 -0.12418 164 ->179 0.14009 Excited State 13: Singlet-A 4.5449 eV 272.80 nm f=0.0043 <S**2>=0.000 161 ->165 0.19706 162 ->165 0.66656 Singlet-A 4.5887 eV 270.19 nm f=0.0038 <S**2>=0.000 Excited State 14: 164 ->175 0.57427 164 ->176 0.31347 164 ->178 -0.11895164 ->179 0.11657 Singlet-A 4.6607 eV 266.02 nm f=0.0042 <S**2>=0.000 Excited State 15: 0.11237 164 ->173 164 ->174 0.56280 164 ->175 0.26157 164 ->176 -0.18888 164 ->177 -0.12252 0.14612 164 ->178 -0.10866 164 ->179 Excited State 16: Singlet-A 4.6965 eV 263.99 nm f=0.0076 <S**2>=0.000 -0.11841 164 ->175

S59

164 ->176 0.47021 -0.31121 164 ->177 164 ->178 0.36527 Excited State 17: Singlet-A 4.7292 eV 262.17 nm f=0.0020 <S**2>=0.000 0.59738 164 ->177 164 ->178 0.32423 Excited State 18: Singlet-A 4.8300 eV 256.70 nm f=0.0029 <S**2>=0.000 -0.14849 164 ->173 164 ->178 0.25059 164 ->179 0.57099 164 ->180 -0.14131 164 ->188 0.10059 Singlet-A Excited State 19: 4.8851 eV 253.80 nm f=0.0044 <S**2>=0.000 161 ->169 -0.23757 162 ->167 0.56929 163 ->166 -0.10877163 ->169 0.27961 Excited State 20: Singlet-A 4.9378 eV 251.09 nm f=0.0017 <S**2>=0.000 164 ->175 -0.10478 -0.10035 164 ->178 164 ->180 -0.27746 0.51677 164 ->181 164 ->182 0.24943 164 ->183 0.18565 Excited State 21: 4.9447 eV 250.74 nm f=0.0223 <S**2>=0.000 Singlet-A 0.62694 160 ->165 163 ->166 0.27734 Excited State 22: Singlet-A 4.9700 eV 249.46 nm f=0.0303 <S**2>=0.000 160 ->165 -0.28594 161 ->166 -0.34693 163 ->166 0.52498 Excited State 23: Singlet-A 5.0199 eV 246.99 nm f=0.0084 <S**2>=0.000 159 ->165 0.43619 161 ->166 -0.10227 164 ->179 0.15233 164 ->180 0.45303 164 ->181 0.15443 Singlet-A 5.0232 eV 246.82 nm f=0.0060 <S**2>=0.000 Excited State 24: -0.10446158 ->165 159 ->165 0.50971 164 ->180 -0.40712 164 ->181 -0.14524 164 ->182 -0.14389 Excited State 25: Singlet-A 162 ->166 0.68892 5.0468 eV 245.67 nm f=0.0040 <S**2>=0.000 Excited State 26: Singlet-A 5.0632 eV 244.87 nm f=0.0036 <S**2>=0.000 0.13093 164 ->178 164 ->179 -0.14579 -0.26023 164 ->181 0.56898 0.10382 164 ->182 164 ->184

164 ->185 -0.15406 Excited State 27: Singlet-A 5.0781 eV 244.16 nm f=0.0440 <S**2>=0.000 -0.34287 161 ->166 161 ->167 0.35907 163 ->166 -0.17558 163 ->167 0.41353 164 ->183 -0.12814 Excited State 28: Singlet-A 5.1029 eV 242.97 nm f=0.1896 <S**2>=0.000 158 ->165 0.12961 161 ->166 0.37300 162 ->166 -0.10437 163 ->166 0.20096 163 ->167 0.48989 164 ->183 0.11684 Singlet-A 5.1202 eV 242.15 nm f=0.0355 <S**2>=0.000 Excited State 29: 161 ->166 -0.11322 164 ->179 0.15646 164 ->181 -0.15740 164 ->183 0.57951 164 ->186 0.15027 -0.15345 164 ->187 Excited State 30: Singlet-A 5.1597 eV 240.30 nm f=0.0025 <S**2>=0.000 158 ->165 0.11208 164 ->181 0.19261 164 ->182 -0.11940 164 ->184 0.53629 164 ->185 -0.22791 164 ->186 0.17668 164 ->187 -0.22689 Excited State 31: Singlet-A 5.1689 eV 239.86 nm f=0.0731 <S**2>=0.000 158 ->165 0.65174 159 ->165 0.12900 Excited State 32: Singlet-A 5.1869 eV 239.03 nm f=0.0031 <S**2>=0.000 164 ->182 0.16310 164 ->184 0.21295 164 ->185 0.59113 164 ->187 -0.13271 164 ->188 -0.12751

Table S14. Transition Energy, Wavelength, and Oscillator Strengths of the Electronic Transition of *anti*-2_{opt} Calculated at the TD-B3LYP/6-31+G(d) Level (The 306th Orbital is Highest Occupied π (Si=Si) Orbital Shown in Figure 3 in the Main Text)

Excited 305 306	State -> 307 -> 307	1:	Singlet-A 0.16430 0.48263	2.7444	eV	451.77 nm	f=0.0515	<s**2>=0.000</s**2>
306 306	-> 308 -> 309		0.35805 -0.30998					
Excited 305 305	State -> 307 -> 308	2:	Singlet-A -0.19930 -0.37413	2.9047	7 eV	426.83 nm	f=0.0197	<\$**2>=0.000

305 -> 309 306 -> 307 306 -> 308 306 -> 309		0.21946 -0.26934 0.37911 -0.18700				
Excited State 305 -> 307 305 -> 308 305 -> 309 306 -> 307 306 -> 308	3:	Singlet-A 0.39816 0.16608 -0.28118 -0.35343 0.30353	2.9899 eV	7 414.68 nm	f=0.2463	<s**2>=0.000</s**2>
Excited State 305 -> 307 305 -> 308 305 -> 309 305 -> 310 306 -> 310 306 -> 311	4:	Singlet-A -0.37819 0.41580 -0.11425 0.17360 -0.27136 0.20679 -0.10598	3.1104 eV	7 398.61 nm	f=0.0410	<s**2>=0.000</s**2>
Excited State 305 -> 309 305 -> 310 305 -> 311 306 -> 307 306 -> 308 306 -> 309 306 -> 310 306 -> 311	5:	Singlet-A 0.17020 0.17722 -0.19643 0.20895 0.16997 0.41770 0.35238 -0.12806	3.1986 eV	7 387.62 nm	f=0.0271	<s**2>=0.000</s**2>
Excited State 305 -> 307 305 -> 309 305 -> 310 305 -> 311 306 -> 310 306 -> 311	6:	Singlet-A -0.10943 -0.17417 -0.20661 -0.32761 0.15360 0.51760	3.2387 eV	7 382.82 nm	f=0.0029	<s**2>=0.000</s**2>
Excited State 305 -> 307 305 -> 308 305 -> 309 305 -> 310 305 -> 311 306 -> 308 306 -> 309 306 -> 310	7:	Singlet-A 0.30824 -0.11614 0.10900 0.12707 -0.15922 -0.31256 -0.31907 0.35001	3.3968 eV	7 365.00 nm	f=0.0482	<s**2>=0.000</s**2>
Excited State 305 -> 307 305 -> 308 305 -> 309 305 -> 310 306 -> 310 306 -> 311	8:	Singlet-A 0.13032 0.35934 0.51946 -0.11202 -0.11570 -0.12102 0.15471	3.4560 eV	7 358.75 nm	f=0.2869	<s**2>=0.000</s**2>
Excited State 305 -> 310 305 -> 311	9:	Singlet-A 0.22683 0.50062	3.7055 eV	7 334.59 nm	f=0.0060	<s**2>=0.000</s**2>

S62

 306
 ->
 310
 0.21198

 306
 ->
 311
 0.36836

 306 -> 311 0.36836 3.7493 eV 330.69 nm f=0.0017 <S**2>=0.000 Excited State 10: Singlet-A 0.41981 305 -> 310 305 -> 311 -0.17358 305 -> 313 0.16204 305 -> 314 -0.12891 306 -> 310 -0.24998 306 -> 311 0.13020 306 -> 312 0.18155 306 -> 313 -0.32945 306 -> 315 -0.10619 Excited State 11: Singlet-A 3.7596 eV 329.78 nm f=0.0014 <S**2>=0.000 305 -> 310 0.35887 305 -> 311 -0.15468 305 -> 312 0.10258 305 -> 313 -0.19627305 -> 314 0.13495 306 -> 310 -0.21435 306 -> 311 0.10892 306 -> 312 -0.21283 306 -> 313 0.39175 306 -> 314 -0.10481 Excited State 12: 3.7834 eV 327.71 nm f=0.0012 <S**2>=0.000 Singlet-A 0.15030 305 -> 313 305 -> 314 0.19055 305 -> 315 0.21211 306 -> 314 0.50389 306 -> 315 0.34818 Excited State 13: Singlet-A 3.9118 eV 316.95 nm f=0.0491 <S**2>=0.000 305 -> 314 0.11338 305 -> 315 -0.13197 306 -> 312 0.57810 306 -> 313 0.33425 Excited State 14: Singlet-A 3.9773 eV 311.73 nm f=0.0007 <S**2>=0.000 -0.29727 305 -> 312 305 -> 313 -0.22531 306 -> 312 0.10756 306 -> 313 -0.19901 306 -> 314 -0.30646 306 -> 315 0.44923 Singlet-A 4.0501 eV 306.12 nm f=0.0003 <S**2>=0.000 Excited State 15: -0.30847 305 -> 312 305 -> 313 0.46131 305 -> 314 -0.20581 306 -> 312 -0.15493 306 -> 313 0.23780 306 -> 314 -0.21124 Singlet-A 4.0822 eV 303.72 nm f=0.0054 <S**2>=0.000 Excited State 16: 0.66760 304 -> 307 304 -> 308 -0.16595 Excited State 17: Singlet-A 4.1230 eV 300.71 nm f=0.0020 <S**2>=0.000 305 -> 313 0.17440

305 -> 314 0.34033 305 -> 315 0.25410 306 -> 314 -0.20616 306 -> 315 -0.12138 306 -> 316 -0.24812 306 -> 317 0.22710 306 -> 318 -0.11015 306 -> 321 0.18095 306 -> 323 0.11225 Excited State 18: Singlet-A 4.1464 eV 299.02 nm f=0.0051 <S**2>=0.000 305 -> 312 -0.29842 306 -> 314 0.10170 306 -> 315 -0.15253 306 -> 316 0.36442 306 -> 317 0.36413 306 -> 321 0.17558 Excited State 19: Singlet-A 4.1562 eV 298.31 nm f=0.0012 <S**2>=0.000 305 -> 312 -0.29614 305 -> 314 0.37461 305 -> 315 0.10106 306 -> 315 -0.28765 306 -> 316 0.10352 306 -> 317 -0.32018 306 -> 321 -0.14744 Excited State 20: 4.1912 eV 295.82 nm f=0.0014 <S**2>=0.000 Singlet-A 0.26631 305 -> 312 305 -> 313 0.19964 305 -> 314 0.11919 305 -> 315 0.14652 305 -> 317 0.19142 305 -> 318 -0.12421 305 -> 321 0.10944 306 -> 314 -0.15562 306 -> 315 0.10287 306 -> 316 0.46191 Singlet-A 4.2028 eV 295.00 nm f=0.0533 <S**2>=0.000 Excited State 21: 0.39787 304 -> 308 305 -> 313 -0.16778 305 -> 314 -0.20254 305 -> 315 0.27376 306 -> 317 -0.13211 306 -> 318 -0.34084 Excited State 22: Singlet-A 4.2212 eV 293.72 nm f=0.0828 <S**2>=0.000 304 -> 3070.12675 304 -> 308 0.49558 305 -> 313 0.10545 305 -> 314 0.13874 305 -> 315 -0.32118 306 -> 318 0.19118 306 -> 320 -0.13388 Singlet-A 4.2511 eV 291.65 nm f=0.0067 <S**2>=0.000 Excited State 23: 304 -> 308 0.15502 305 -> 315 0.30203 305 -> 316 -0.17019 305 -> 319 -0.13328

306 -> 317 0.27385 306 -> 318 0.29625 306 -> 320 0.26659 306 -> 321 -0.17543 Excited State 24: Singlet-A 4.2810 eV 289.61 nm f=0.0014 <S**2>=0.000 305 -> 317 -0.39677 305 -> 321 -0.14983 306 -> 316 0.16538 306 -> 319 0.45017 Excited State 25: Singlet-A 4.3224 eV 286.84 nm f=0.0017 <S**2>=0.000 0.12736 305 -> 315 0.37358 305 -> 316 306 -> 317 0.14018 306 -> 320 -0.34723 306 -> 321 -0.35082 306 -> 323 -0.13966 Excited State 26: Singlet-A 4.3333 eV 286.12 nm f=0.0051 <S**2>=0.000 305 -> 314 0.11636 305 -> 315 -0.10172 305 -> 318 -0.20220 305 -> 321 0.29787 305 -> 323 0.18158 306 -> 316 -0.14802 306 -> 317 0.13100 306 -> 318 -0.21514 0.31614 306 -> 319 306 -> 320 0.13142 Excited State 27: Singlet-A 4.3530 eV 284.82 nm f=0.0037 <S**2>=0.000 -0.10417 305 -> 314 0.17238 305 -> 315 305 -> 317 0.11984 305 -> 321 0.18085 305 -> 324 0.11838 306 -> 318 0.35116 306 -> 319 0.17712 306 -> 320 -0.32126 306 -> 321 0.15735 306 -> 323 0.12065 Excited State 28: Singlet-A 4.3889 eV 282.50 nm f=0.0012 <S**2>=0.000 0.39924 300 -> 307300 -> 3080.19303 301 -> 307 0.11736 302 -> 3070.48475 302 -> 3080.13404 Singlet-A 4.4249 eV 280.20 nm f=0.0010 <S**2>=0.000 Excited State 29: 0.50927 305 -> 316 306 -> 317 -0.14040 306 -> 318 0.18176 306 -> 320 0.30467 306 -> 321 0.17895 306 -> 323 -0.10220 Excited State 30: Singlet-A 4.4407 eV 279.20 nm f=0.0166 <S**2>=0.000 0.31486 300 -> 307 300 -> 308 -0.29917

302 -> 307 302 -> 308	-0.26732 0.44540				
Excited State 305 -> 317 305 -> 318 305 -> 321 305 -> 326 306 -> 319 306 -> 325	31: Singlet-A 0.44924 0.28271 -0.12219 0.12374 0.33537 0.10855	4.4679 eV	277.50 nm	f=0.0013	<s**2>=0.000</s**2>
Excited State 305 -> 317 305 -> 318 305 -> 320 306 -> 322 306 -> 324	32: Singlet-A -0.18013 0.46540 -0.17810 0.33646 0.16987	4.4710 eV	277.31 nm	f=0.0003	<s**2>=0.000</s**2>

Table S15. Transition Energy, Wavelength, and Oscillator Strengths of the Electronic Transition of *syn*-2_{opt} Calculated at the TD-B3LYP/6-31+G(d) Level (The 306th Orbital is Highest Occupied π (Si=Si) Orbital Shown in Figure 3 in the Main Text)

Excited State 305 -> 307 306 -> 307 306 -> 309	1:	Singlet-A 0.11982 0.66541 0.17699	2.5404 eV	488.05 nm	f=0.2522	<s**2>=0.000</s**2>
Excited State 305 -> 307 305 -> 309 306 -> 307 306 -> 308	2:	Singlet-A 0.64086 0.20078 -0.11768 -0.12111	2.7518 eV	450.55 nm	f=0.0680	<s**2>=0.000</s**2>
Excited State 305 -> 308 305 -> 311 306 -> 308 306 -> 310 306 -> 311	3:	Singlet-A -0.18055 0.20336 0.51958 0.26447 -0.25015	3.0537 eV	406.02 nm	f=0.0498	<s**2>=0.000</s**2>
Excited State 305 -> 308 305 -> 310 306 -> 307 306 -> 309 306 -> 310 306 -> 311	4:	Singlet-A -0.10713 -0.30433 -0.11648 0.51059 -0.23633 -0.21677	3.1010 eV	399.82 nm	f=0.0268	<s**2>=0.000</s**2>
Excited State 305 -> 308 305 -> 309 305 -> 310 305 -> 311 306 -> 308 306 -> 309 306 -> 310	5:	Singlet-A 0.21038 -0.24305 0.22527 0.14367 -0.20027 0.36368 0.36620	3.1943 eV	388.14 nm	f=0.0106	<s**2>=0.000</s**2>
Excited State	6:	Singlet-A	3.3190 eV	373.56 nm	f=0.0338	<s**2>=0.000</s**2>

305 -> 308 0.11289 305 -> 309 0.42711 305 -> 310 0.16956 306 -> 308 0.28407 306 -> 309 0.21973 306 -> 311 0.35777 Excited State 7: Singlet-A 3.4447 eV 359.93 nm f=0.2225 <S**2>=0.000 305 -> 307 0.12081 305 -> 308 0.59414 306 -> 308 0.20044 306 -> 310 -0.15381 306 -> 311 -0.18958 Excited State 8: Singlet-A 3.4756 eV 356.73 nm f=0.1705 <S**2>=0.000 305 -> 307 -0.20825 305 -> 308 0.14393 305 -> 309 0.42283 305 -> 310 -0.11447305 -> 311 0.14914 306 -> 308 -0.20385306 -> 310 0.27365 306 -> 311 -0.26832 Excited State 9: 3.6044 eV 343.98 nm f=0.0080 <S**2>=0.000 Singlet-A -0.12371 305 -> 310 305 -> 312 -0.27495 306 -> 312 0.60715 306 -> 313 0.10530 Excited State 10: Singlet-A 3.6754 eV 337.33 nm f=0.0104 <S**2>=0.000 305 -> 310 0.50846 305 -> 311 0.15068 306 -> 310 -0.31375 306 -> 311 -0.26416 306 -> 312 0.17011 Excited State 11: 3.7385 eV 331.64 nm f=0.0073 <S**2>=0.000 Singlet-A 305 -> 310 -0.14286 305 -> 311 0.56727 305 -> 315 -0.10928 306 -> 310 -0.17124 306 -> 311 0.22422 306 -> 315 -0.16675 Singlet-A 3.7568 eV 330.03 nm f=0.0027 <S**2>=0.000 Excited State 12: 305 -> 311 0.19060 305 -> 314 -0.16314 305 -> 315 0.30325 306 -> 314 -0.25820 306 -> 315 0.49749 Singlet-A 3.8098 eV 325.44 nm f=0.0387 <S**2>=0.000 Excited State 13: 305 -> 314 0.14270 306 -> 312 -0.10463 306 -> 313 0.66468 Singlet-A 3.9096 eV 317.13 nm f=0.0269 <S**2>=0.000 Excited State 14: 0.37519 305 -> 313 306 -> 314 0.52673 306 -> 315 0.24932

3.9973 eV 310.17 nm f=0.0010 <S**2>=0.000 Excited State 15: Singlet-A 0.61737 305 -> 312 306 -> 312 0.27268 306 -> 315 -0.11154 Excited State 16: Singlet-A 4.0370 eV 307.12 nm f=0.0077 <S**2>=0.000 305 -> 313 -0.12118 305 -> 314 -0.18373 306 -> 316 0.59506 306 -> 318 -0.12987 306 -> 328 0.10684 Excited State 17: Singlet-A 4.0797 eV 303.90 nm f=0.0219 <S**2>=0.000 -0.20892 304 -> 307 305 -> 313 0.21380 305 -> 315 0.37001 306 -> 315 -0.26819306 -> 317 0.40461 Excited State 18: Singlet-A 4.0893 eV 303.19 nm f=0.0014 <S**2>=0.000 305 -> 313 0.44313 305 -> 314 0.17078 305 -> 315 -0.28572 306 -> 314 -0.32648 306 -> 316 0.19203 Excited State 19: 4.0996 eV 302.43 nm f=0.0469 <S**2>=0.000 Singlet-A 0.37162 304 -> 307 305 -> 313 0.25484 305 -> 314 -0.16319 305 -> 315 0.23098 306 -> 315 -0.23609 306 -> 317 -0.31346 Excited State 20: Singlet-A 4.1290 eV 300.28 nm f=0.0104 <S**2>=0.000 305 -> 316 0.26176 305 -> 328 0.10950 306 -> 316 0.15324 306 -> 317 0.13728 306 -> 318 0.38701 306 -> 319 -0.17465 306 -> 321 -0.11735 306 -> 324 0.31846 Singlet-A 4.1404 eV 299.45 nm f=0.0345 <S**2>=0.000 Excited State 21: 304 -> 307 0.51005 305 -> 315 -0.10211 306 -> 3170.41397 Singlet-A 4.1630 eV 297.82 nm f=0.0025 <S**2>=0.000 Excited State 22: -0.40139 305 -> 314 305 -> 315 -0.18900 306 -> 318 0.25282 306 -> 319 0.42352 Singlet-A 4.2281 eV 293.24 nm f=0.0066 <S**2>=0.000 Excited State 23: 0.13032 305 -> 314 305 -> 316 -0.14214 305 -> 317 0.35994 306 -> 318 0.17229

306 -> 320 0.48207 Excited State 24: Singlet-A 4.2516 eV 291.62 nm f=0.0057 <S**2>=0.000 300 -> 307 -0.11803 301 -> 307 -0.13337 305 -> 314 0.28898 305 -> 315 0.14663 305 -> 316 -0.18823 305 -> 317 -0.16156 306 -> 313 -0.11495 306 -> 316 0.14472 306 -> 319 0.36699 306 -> 320 -0.12399 306 -> 324 0.24190 Excited State 25: Singlet-A 4.2702 eV 290.35 nm f=0.0036 <S**2>=0.000 0.19018 300 -> 307 0.12340 301 -> 307 305 -> 314 -0.20024 305 -> 315 -0.13358 305 -> 316 -0.22613 305 -> 319 0.10596 305 -> 324 -0.12356 306 -> 318 -0.29125 306 -> 320 0.13721 306 -> 324 0.34837 306 -> 328 -0.10616 Excited State 26: 4.2755 eV 289.99 nm f=0.0081 <S**2>=0.000 Singlet-A 300 -> 307 0.35948 301 -> 307 0.36130 302 -> 307 0.11703 303 -> 307 -0.28409 0.18113 305 -> 314 306 -> 318 0.11182 306 -> 320 -0.15794 Excited State 27: 4.3035 eV 288.10 nm f=0.0015 <S**2>=0.000 Singlet-A 303 -> 307 -0.11180 305 -> 318 0.17071 305 -> 321 -0.13272 305 -> 324 0.32924 305 -> 325 0.11781 306 -> 316 -0.17132 306 -> 319 0.11824 306 -> 321 -0.16530306 -> 322 0.17192 306 -> 3240.10312 306 -> 325 0.19543 306 -> 328 0.22435 Singlet-A 4.3122 eV 287.52 nm f=0.0011 <S**2>=0.000 Excited State 28: -0.18206 300 -> 307 301 -> 307 -0.19097 302 -> 307 0.56374 303 -> 307 -0.28190 Singlet-A 4.3540 eV 284.76 nm f=0.0002 <S**2>=0.000 Excited State 29: 305 -> 316 0.51038 306 -> 318 -0.31295 306 -> 319 0.27715

```
306 -> 320
                       0.14553
Excited State 30: SingL
                                            4.3650 eV 284.04 nm f=0.0096 <S**2>=0.000
                           Singlet-A
    300 -> 308
                        0.10504
    301 -> 307
                        -0.32224
    301 -> 308
                        -0.13021
    302 -> 307
                        0.17840
    303 -> 307
                         0.25672
Excited State 31:
                           Singlet-A 4.3833 eV 282.85 nm f=0.0023 <S**2>=0.000
                 -u.10916
0.36180
0.31759
0.45861
    300 -> 307
    301 -> 307
    302 -> 307
    303 -> 307
    303 -> 308
                           Singlet-A 4.3903 eV 282.40 nm f=0.0047 <S**2>=0.000
Excited State 32:

        305
        ->
        316
        0.13553

        305
        ->
        317
        -0.28202

        305
        ->
        318
        0.26532

    305 -> 319
                        0.38593
    306 -> 321
                        0.24635
    306 -> 322
                        0.20063
```

Table S16. Transition Energy, Wavelength, and Oscillator Strengths of the Electronic Transition of *anti*-3_{opt} Calculated at the TD-B3LYP/6-31+G(d) Level (The 327th Orbital is Highest Occupied π (Si=Si) Orbital Shown in Figure 3 in the Main Text)

Excited State 326 -> 328 327 -> 328	1:	Singlet-A 0.10437 0.68108	2.4662 eV	502.73 nm	f=0.0286	<s**2>=0.000</s**2>
Excited State 326 -> 328 327 -> 328	2:	Singlet-A 0.67896 -0.10019	2.4975 eV	496.42 nm	f=0.0085	<s**2>=0.000</s**2>
Excited State 325 -> 328 326 -> 330 326 -> 331 326 -> 332 327 -> 328 327 -> 329 327 -> 330 327 -> 331 327 -> 332	3:	Singlet-A 0.11736 0.13023 0.23860 -0.14639 -0.11133 0.45082 -0.25070 -0.25303 -0.18735	3.1027 eV	399.60 nm	f=0.3132	<s**2>=0.000</s**2>
Excited State 326 -> 329 326 -> 330 326 -> 331 326 -> 332 327 -> 329 327 -> 330 327 -> 331 327 -> 331 327 -> 332	4:	Singlet-A 0.37502 -0.13548 -0.13208 -0.35169 0.13475 0.15302 0.29121 -0.22826	3.1360 eV	395.36 nm	f=0.0185	<s**2>=0.000</s**2>

Excited State 326 -> 329 326 -> 331 327 -> 329 327 -> 330 327 -> 331	5:	Singlet-A -0.39373 -0.14090 0.43028 0.30086 0.16611	3.1880	eV	388.91 nm	f=0.0114	<s**2>=0.000</s**2>
Excited State 326 -> 330 326 -> 332 327 -> 330 327 -> 332	6:	Singlet-A 0.54179 -0.10998 0.39595 -0.11033	3.2257	eV	384.37 nm	f=0.0026	<s**2>=0.000</s**2>
Excited State 325 -> 328 326 -> 329 326 -> 330 326 -> 331 326 -> 332 327 -> 329 327 -> 330 327 -> 331 327 -> 331	7:	Singlet-A 0.31052 0.16530 0.30996 -0.24867 0.18320 0.13145 -0.20005 0.25740 0.22626	3.3279	eV	372.56 nm	f=0.6866	<s**2>=0.000</s**2>
Excited State 326 -> 329 326 -> 330 326 -> 331 326 -> 332 327 -> 329 327 -> 330 327 -> 331 327 -> 331	8:	Singlet-A 0.38056 -0.12195 0.10498 0.29529 0.17733 0.30254 -0.24457 0.20076	3.3814	eV	366.67 nm	f=0.0327	<s**2>=0.000</s**2>
Excited State 325 -> 328 326 -> 329 326 -> 330 327 -> 329 327 -> 330	9:	Singlet-A 0.60921 -0.11893 -0.19312 -0.14171 0.13273	3.5702	eV	347.28 nm	f=0.6171	<s**2>=0.000</s**2>
Excited State 325 -> 329 326 -> 332 326 -> 333 327 -> 333	10:	Singlet-A -0.24771 0.10141 -0.12226 0.59518	3.7644	eV	329.36 nm	f=0.0280	<s**2>=0.000</s**2>
Excited State 325 -> 329 326 -> 333 327 -> 333	11:	Singlet-A 0.57540 0.24110 0.25063	3.7758	eV	328.37 nm	f=0.0286	<s**2>=0.000</s**2>
Excited State 325 -> 329 325 -> 330 326 -> 331 326 -> 333 327 -> 331 327 -> 332 327 -> 332 327 -> 337	12:	Singlet-A -0.29921 -0.11040 0.15256 0.50862 0.10974 0.17641 0.11815	3.7907	eV	327.08 nm	f=0.0284	<s**2>=0.000</s**2>

Excited State 326 -> 336 326 -> 337 327 -> 336 327 -> 337	13:	Singlet-A -0.32020 0.25618 0.46545 -0.28469	3.8122 e	V 325.	23 nm	f=0.0007	<s**2>=0.000</s**2>
Excited State 325 -> 330 326 -> 332 326 -> 336 326 -> 337 327 -> 331 327 -> 332 327 -> 336 327 -> 336 327 -> 337	14:	Singlet-A 0.41151 -0.23719 0.14048 0.24573 -0.14334 0.28152 0.15978 0.19038	3.8181 e	V 324.	73 nm	f=0.0100	<s**2>=0.000</s**2>
Excited State 325 -> 330 326 -> 331 326 -> 332 326 -> 335 326 -> 336 326 -> 337 327 -> 332 327 -> 336 327 -> 337	15:	Singlet-A -0.22175 -0.17081 0.21918 0.11317 0.23999 0.30055 -0.28204 0.14411 0.28396	3.8195 e	V 324.	61 nm	f=0.0053	<s**2>=0.000</s**2>
Excited State 325 -> 330 326 -> 331 326 -> 332 326 -> 333 327 -> 331 327 -> 332	16:	Singlet-A 0.49471 0.11491 0.29674 0.14149 0.14703 -0.29301	3.8212 e	V 324.	46 nm	f=0.0200	<s**2>=0.000</s**2>
Excited State 326 -> 331 326 -> 333 326 -> 336 327 -> 331 327 -> 332	17:	Singlet-A 0.48633 -0.26510 0.12049 0.34121 0.10661	3.8325 e	v 323.	51 nm	f=0.0034	<s**2>=0.000</s**2>
Excited State 326 -> 335 327 -> 334 327 -> 335	18:	Singlet-A 0.36606 0.56442 -0.13342	3.9676 e	v 312.	49 nm	f=0.0035	<s**2>=0.000</s**2>
Excited State 326 -> 334 326 -> 335 327 -> 335	19:	Singlet-A 0.51852 0.13355 0.43235	3.9752 e	V 311.	89 nm	f=0.0315	<s**2>=0.000</s**2>
Excited State 326 -> 334 326 -> 335 326 -> 339 327 -> 334 327 -> 335 327 -> 336 327 -> 337 327 -> 338	20:	Singlet-A -0.28914 -0.24796 0.14931 0.25379 0.34999 -0.14237 -0.11473 0.10946	4.1926 e	.v 295.	72 nm	f=0.0007	<s**2>=0.000</s**2>
327 -> 339 -0.21884 Excited State 21: Singlet-A 4.2012 eV 295.12 nm f=0.0010 <S**2>=0.000 326 -> 334 -0.28484 326 -> 335 0.39044 326 -> 336 -0.13459 326 -> 337 -0.12338 326 -> 339 0.11696 326 -> 341 0.13285 327 -> 334 -0.20128 327 -> 335 0.25870 327 -> 338 -0.15049 327 -> 339 0.15043 327 -> 341 0.11078 Excited State 22: Singlet-A 4.2273 eV 293.30 nm f=0.0010 <S**2>=0.000 -0.20669 326 -> 335 326 -> 336 -0.14940 326 -> 337 -0.26361 326 -> 338 0.14226 326 -> 341 0.12079 0.18003 327 -> 335 327 -> 336 0.17800 327 -> 337 0.34056 327 -> 338 -0.31730 327 -> 341 -0.13923 Excited State 23: 4.2430 eV 292.21 nm f=0.0051 <S**2>=0.000 Singlet-A 326 -> 333 0.11218 326 -> 337 -0.16804 326 -> 338 0.28845 326 -> 339 0.30993 326 -> 341 -0.12899 326 -> 342 0.10727 327 -> 336 0.13746 327 -> 338 0.29910 327 -> 339 0.26770 Excited State 24: Singlet-A 4.2511 eV 291.65 nm f=0.0010 <S**2>=0.000 326 -> 336 0.45786 326 -> 337 -0.25833 327 -> 336 0.28036 327 -> 337 -0.26775 327 -> 338 -0.14043 Singlet-A 4.2584 eV 291.16 nm f=0.0011 <S**2>=0.000 Excited State 25: 326 -> 337 0.23987 326 -> 338 0.34524 326 -> 341 0.11957 327 -> 336 -0.21001 327 -> 337 -0.20287 327 -> 338 -0.28626 327 -> 339 0.16112 327 -> 341 -0.25635 Singlet-A 4.2933 eV 288.78 nm f=0.0185 <S**2>=0.000 Excited State 26: 0.37883 321 -> 328 321 -> 330 0.11095 326 -> 342 -0.29481 327 -> 339 -0.11722 327 -> 340 0.37786

327 -> 342 0.20942 Excited State 27: Singlet-A 4.2968 eV 288.55 nm f=0.0044 <S**2>=0.000 -0.11362 321 -> 328 322 -> 328 0.36836 322 -> 329 -0.10005 326 -> 340 0.36165 326 -> 342 -0.11965 327 -> 340 0.18570 327 -> 342 -0.28464 Excited State 28: Singlet-A 4.3054 eV 287.97 nm f=0.0001 <S**2>=0.000 321 -> 328 -0.33698 321 -> 330 -0.10750 322 -> 328 0.36747 326 -> 340 -0.27018 327 -> 339 -0.10104 327 -> 342 0.31219 Excited State 29: 4.3071 eV 287.86 nm f=0.0028 <S**2>=0.000 Singlet-A 321 -> 328 0.41861 322 -> 328 0.39385 326 -> 340 -0.10740 326 -> 342 0.19089 327 -> 340 -0.24823 Excited State 30: 4.3295 eV 286.37 nm f=0.0013 <S**2>=0.000 Singlet-A 0.10398 321 -> 328 322 -> 328 -0.10059 323 -> 328 0.66159 323 -> 330 0.14899 Excited State 31: Singlet-A 4.3381 eV 285.80 nm f=0.0001 <S**2>=0.000 -0.19726 324 -> 328 326 -> 335 -0.19644 326 -> 339 0.11025 326 -> 340 -0.11186 326 -> 343 0.17463 327 -> 334 0.18579 327 -> 338 -0.12963 327 -> 339 0.34838 327 -> 340 0.14934 327 -> 341 0.34333 Excited State 32: 4.3404 eV 285.65 nm f=0.0011 <S**2>=0.000 Singlet-A 0.13781 322 -> 328 324 -> 328 0.62724 324 -> 329 -0.12592 327 -> 339 0.11854 327 -> 341 0.11877

Table S17. Transition Energy, Wavelength, and Oscillator Strengths of the Electronic Transition of *syn*-3_{opt} Calculated at the TD-B3LYP/6-31+G(d) Level (The 327th Orbital is Highest Occupied π (Si=Si) Orbital Shown in Figure 3 in the Main Text)

Excited State 1: Singlet-A 2.4872 eV 498.48 nm f=0.0467 <S**2>=0.000 326 -> 328 -0.22923 327 -> 328 0.63372

327 -> 330 0.15996 2.5163 eV 492.73 nm f=0.0167 <S**2>=0.000 Excited State 2: Singlet-A 326 -> 328 0.63327 326 -> 330 0.16784 327 -> 328 0.23110 Excited State 3: Singlet-A 3.0562 eV 405.69 nm f=0.0525 <S**2>=0.000 325 -> 328 0.11722 326 -> 329 -0.23174 326 -> 330 -0.14970 326 -> 332 0.23373 327 -> 329 0.45693 327 -> 330 -0.27982 327 -> 331 -0.22038 Excited State 4: Singlet-A 3.0794 eV 402.62 nm f=0.1199 <S**2>=0.000 326 -> 331 0.11914 326 -> 332 0.15342 327 -> 329 0.33487 327 -> 330 0.46623 327 -> 331 0.31020 Singlet-A 3.0855 eV 401.83 nm f=0.0725 <S**2>=0.000 Excited State 5: 0.48655 326 -> 329 326 -> 330 0.11923 326 -> 332 -0.25022 0.39739 327 -> 329 327 -> 332 0.10106 Excited State 6: Singlet-A 3.1454 eV 394.17 nm f=0.0076 <S**2>=0.000 -0.17261 326 -> 328 326 -> 329 -0.18726 326 -> 330 0.62670 327 -> 330 -0.15731 Excited State 7: 3.3175 eV 373.73 nm f=0.2987 <S**2>=0.000 Singlet-A 325 -> 328 0.31189 326 -> 330 -0.11270 326 -> 331 0.11366 326 -> 332 -0.26006 327 -> 328 0.10251 327 -> 330 -0.24599 327 -> 331 0.46268 Excited State 8: Singlet-A 3.3995 eV 364.71 nm f=0.2719 <S**2>=0.000 0.35683 326 -> 329326 -> 331 0.11928 326 -> 332 0.45237 327 -> 330 -0.20517 327 -> 331 0.21234 327 -> 332 -0.18936 Excited State 9: Singlet-A 3.5577 eV 348.50 nm f=0.4919 <S**2>=0.000 0.60475 325 -> 328 326 -> 329 0.12947 326 -> 330 0.10257 326 -> 332 0.11165 327 -> 330 0.18840 -0.16842 327 -> 331

Excited State 10: Singl 0.19277 3.6893 eV 336.07 nm f=0.0079 <S**2>=0.000 Singlet-A 327 -> 333 0.17259 327 -> 334 0.62651 327 -> 335 -0.16596 Excited State 11: Singlet-A 3.7085 eV 334.32 nm f=0.0286 <S**2>=0.000 0.61132 325 -> 329 327 -> 333 0.29476 Excited State 12: Singlet-A 3.7118 eV 334.03 nm f=0.0021 <S**2>=0.000 325 -> 329 -0.32488 327 -> 333 0.54888 327 -> 334 -0.17461 327 -> 337 -0.11337 Excited State 13: Singlet-A 3.7425 eV 331.29 nm f=0.0144 <s**2>=0.000 326 -> 333 0.66325 Excited State 14: 3.8148 eV 325.01 nm f=0.0001 <S**2>=0.000 Singlet-A 326 -> 332 0.23331 327 -> 332 0.65241 Excited State 15: 3.8351 eV 323.29 nm f=0.0008 <S**2>=0.000 Singlet-A 0.66495 326 -> 331 327 -> 331 -0.20435 Excited State 16: Singlet-A 3.8381 eV 323.04 nm f=0.1729 <S**2>=0.000 325 -> 330 0.68747 Excited State 17: Singlet-A 3.8623 eV 321.01 nm f=0.0020 <S**2>=0.000 326 -> 336 0.41942 326 -> 337 0.48839 327 -> 336 -0.15423 327 -> 337 -0.17569 Excited State 18: Singlet-A 3.9742 eV 311.98 nm f=0.0259 <S**2>=0.000 326 -> 336 0.10482 327 -> 334 0.14921 327 -> 335 0.59339 327 -> 336 0.24599 327 -> 337 -0.15202 Excited State 19: Singlet-A 4.0087 eV 309.29 nm f=0.0114 <S**2>=0.000 $326 \rightarrow 333$ 0.10289 326 -> 334 0.12242 326 -> 335 0.55911 326 -> 336 -0.20467326 -> 337 0.23565 327 -> 336 0.14003 327 -> 337 -0.13135 Excited State 20: Singlet-A 4.1631 eV 297.82 nm f=0.0005 <S**2>=0.000 326 -> 334 0.66276 327 -> 334 -0.19952 Excited State 21: Singlet-A 4.1783 eV 296.73 nm f=0.0028 <S**2>=0.000 -0.13418 326 -> 335 326 -> 336 0.12580 327 -> 335 -0.23953 327 -> 336 0.40571

327 -> 337 -0.28882 327 -> 338 -0.29974 327 -> 339 0.18228 Excited State 22: Singlet-A 4.2034 eV 294.96 nm f=0.0028 <S**2>=0.000 321 -> 328 0.47795 321 -> 330 -0.17978 322 -> 328 0.40994 322 -> 330 -0.12985 324 -> 328 0.18954 Excited State 23: Singlet-A 4.2178 eV 293.96 nm f=0.0007 <S**2>=0.000 0.28904 326 -> 335 326 -> 336 0.36580 326 -> 337 -0.29831 326 -> 338 0.33904 327 -> 336 -0.10571 0.11401 327 -> 337 327 -> 338 -0.16848 Excited State 24: Singlet-A 4.2362 eV 292.68 nm f=0.0022 <S**2>=0.000 0.12907 326 -> 337 327 -> 333 0.13190 327 -> 336 0.12326 327 -> 337 0.33488 327 -> 339 0.47655 0.11586 327 -> 340 327 -> 341 -0.20110 Excited State 25: 4.2503 eV 291.71 nm f=0.0003 <S**2>=0.000 Singlet-A -0.11750 321 -> 328 322 -> 328 -0.14022 324 -> 328 0.64423 324 -> 330 -0.18553 Excited State 26: Singlet-A 4.2660 eV 290.63 nm f=0.0003 <S**2>=0.000 0.17257 326 -> 337 326 -> 341 0.11287 327 -> 336 0.35215 327 -> 337 0.39198 327 -> 339 -0.35027 327 -> 341 0.13007 Singlet-A 4.2797 eV 289.70 nm f=0.0067 <S**2>=0.000 Excited State 27: -0.12348 326 -> 335 326 -> 336 -0.19970326 -> 338 0.29023 326 -> 339 0.44476 326 -> 340 -0.12040 326 -> 341 0.24266 327 -> 338 -0.13045 327 -> 341 -0.17550 Singlet-A 4.2916 eV 288.90 nm f=0.0046 <S**2>=0.000 Excited State 28: 0.14830 326 -> 338 327 -> 336 0.14331 327 -> 337 -0.10494 327 -> 338 0.33194 327 -> 340 0.45948 327 -> 342 0.23828

Excited State 326 -> 338 326 -> 340 326 -> 342 327 -> 340 327 -> 341 327 -> 342	29:	Singlet-A -0.20363 -0.37429 0.38264 0.23524 0.10204 -0.15642	4.3400 eV	285.68 nm	f=0.0040	<s**2>=0.000</s**2>
Excited State 326 -> 336 326 -> 340 326 -> 342 327 -> 335 327 -> 336 327 -> 338 327 -> 340 327 -> 341 327 -> 342 327 -> 344 327 -> 344	30:	Singlet-A 0.13628 -0.20682 0.11720 -0.13560 0.17153 0.36413 -0.30927 -0.21166 -0.10608 0.10812 -0.13961	4.3473 eV	285.20 nm	f=0.0097	<s**2>=0.000</s**2>
Excited State 321 -> 328 322 -> 328 323 -> 328	31:	Singlet-A -0.37358 0.38196 0.38502	4.3559 eV	284.64 nm	f=0.0040	<s**2>=0.000</s**2>
Excited State 321 -> 328 321 -> 329 322 -> 328 322 -> 329 323 -> 328	32:	Singlet-A 0.18542 -0.15699 -0.28653 0.22503 0.52060	4.3791 eV	283.13 nm	f=0.0010	<s**2>=0.000</s**2>

Table S18. Transition Energy, Wavelength, and Oscillator Strengths of the Electronic Transition of 4_{opt} Calculated at the TD-B3LYP/6-31+G(d) Level (The 189th Orbital is Highest Occupied π (Si=Si) Orbital Shown in Figure 3 in the Main Text)

Excited State 189 ->190	1:	Singlet-A 0.70469	1.8427 eV	672.83 nm	f=0.0252	<s**2>=0.000</s**2>
Excited State 188 ->190 189 ->191 189 ->193 189 ->197	2:	Singlet-A -0.12080 0.63315 0.21586 0.12296	2.9087 eV	426.25 nm	f=0.1061	<s**2>=0.000</s**2>
Excited State 188 ->190 189 ->193	3:	Singlet-A 0.68509 0.10596	3.0611 eV	405.03 nm	f=0.1495	<s**2>=0.000</s**2>
Excited State 189 ->192	4:	Singlet-A 0.69939	3.2718 eV	378.95 nm	f=0.0062	<s**2>=0.000</s**2>
Excited State 189 ->191 189 ->193 189 ->194 189 ->195 189 ->197	5:	Singlet-A -0.10513 0.58177 0.14553 -0.24065 -0.19412	3.5104 eV	353.19 nm	f=0.0286	<s**2>=0.000</s**2>

189 ->200 -0.10339 3.6334 eV 341.23 nm f=0.0016 <S**2>=0.000 Excited State 6: Singlet-A 0.54046 189 ->195 189 ->196 -0.22371 189 ->197 -0.30651 189 ->199 0.14843 189 ->200 -0.14753 Excited State 7: Singlet-A 3.7330 eV 332.13 nm f=0.1625 <S**2>=0.000 188 ->191 0.17068 189 ->191 0.21183 189 ->193 -0.24828 189 ->194 0.44468 189 ->195 -0.17090 189 ->196 -0.25743 189 ->197 -0.17501 Excited State 8: Singlet-A 3.7802 eV 327.98 nm f=0.0230 <S**2>=0.000 189 ->194 0.49404 189 ->195 0.29043 189 ->196 0.36698 Excited State 9: 3.7920 eV 326.97 nm f=0.0412 <S**2>=0.000 Singlet-A 188 ->191 0.16304 189 ->191 0.11786 189 ->194 -0.14838 189 ->195 -0.10943 189 ->196 0.48417 189 ->197 -0.36906 189 ->199 0.12033 189 ->200 -0.13682 Excited State 10: Singlet-A 3.8052 eV 325.83 nm f=0.0244 <s**2>=0.000 185 ->190 0.42520 186 ->190 -0.23192 187 ->190 0.20305 188 ->191 0.19577 188 ->192 0.38535 Excited State 11: Singlet-A 3.9013 eV 317.80 nm f=0.0174 <S**2>=0.000 185 ->190 -0.19072 186 ->190 -0.27274 187 ->190 0.56752 188 ->191 -0.20884188 ->192 -0.10055 Singlet-A 3.9184 eV 316.41 nm f=0.0022 <S**2>=0.000 Excited State 12: 0.17603 185 ->190 186 ->190 0.54688 187 ->190 0.24550 188 ->191 -0.27794 188 ->192 0.16251 Excited State 13: Singlet-A 3.9298 eV 315.50 nm f=0.0282 <S**2>=0.000 185 ->190 -0.14513 186 ->190 0.25629 187 ->190 0.26977 188 ->191 0.51768 188 ->192 -0.17429 0.11347 189 ->197

Singlet-A 4.0615 eV 305.27 nm f=0.0067 <S**2>=0.000 Excited State 14: 0.69344 189 ->198 Excited State 15: Singlet-A 4.1134 eV 301.42 nm f=0.0008 <S**2>=0.000 0.35602 189 ->197 0.50818 189 ->199 189 ->200 -0.32426 Excited State 16: Singlet-A 4.1422 eV 299.32 nm f=0.0040 <S**2>=0.000 189 ->199 0.40870 189 ->200 0.54876 189 ->203 0.10316 Excited State 17: Singlet-A 4.3325 eV 286.18 nm f=0.0004 <S**2>=0.000 0.48300 189 ->201 0.25877 189 ->202 189 ->203 -0.33244 189 ->205 -0.14564 189 ->206 -0.17945 Excited State 18: Singlet-A 4.3891 eV 282.48 nm f=0.0007 <S**2>=0.000 182 ->190 0.59829 183 ->190 -0.15248 184 ->190 -0.20484 188 ->196 0.22696 Excited State 19: 4.4284 eV 279.98 nm f=0.0018 <S**2>=0.000 Singlet-A 189 ->200 -0.10394 189 ->201 0.46070 189 ->202 -0.37565 189 ->203 0.34168 Excited State 20: Singlet-A 4.4561 eV 278.24 nm f=0.0013 <S**2>=0.000 0.48753 189 ->202 189 ->203 0.43982 189 ->204 0.18194 189 ->205 -0.12026 Excited State 21: Singlet-A 4.4817 eV 276.65 nm f=0.0070 <S**2>=0.000 0.53716 188 ->193 189 ->202 -0.13588 189 ->204 0.40957 Excited State 22: Singlet-A 4.4840 eV 276.50 nm f=0.0010 <S**2>=0.000 188 ->193 -0.42824 189 ->203 -0.12155189 ->204 0.52200 Excited State 23: Singlet-A 4.5001 eV 275.51 nm f=0.0006 <S**2>=0.000 0.16100 189 ->201 189 ->202 0.11021 189 ->204 0.12656 189 ->205 0.64815 Singlet-A 4.5497 eV 272.51 nm f=0.0090 <S**2>=0.000 Excited State 24: -0.45780 183 ->190 184 ->190 0.50864 189 ->206 0.11389 Excited State 25: Singlet-A 4.5555 eV 272.17 nm f=0.0006 <S**2>=0.000

S80

184 ->190 189 ->203 189 ->206 189 ->210		-0.18571 -0.16021 0.58132 -0.18948					
Excited State 182 ->190 183 ->190 184 ->190 189 ->206	26:	Singlet-A 0.24696 0.50631 0.38786 0.12722	4.5679 e	V 271.4	3 nm	f=0.0051	<s**2>=0.000</s**2>
Excited State 185 ->190 187 ->191 188 ->192 188 ->194 188 ->195 189 ->208	27:	Singlet-A 0.12915 -0.23133 -0.16672 -0.25477 0.49298 0.13851	4.6984 e	V 263.8	9 nm	f=0.0636	<s**2>=0.000</s**2>
Excited State 187 ->191 188 ->194 188 ->195 188 ->197 189 ->205 189 ->207 189 ->208 189 ->211 189 ->214	28:	Singlet-A 0.10113 0.11842 -0.20464 -0.12415 0.12957 0.32565 0.42170 -0.12712 0.12598	4.7253 e	V 262.3	8 nm	f=0.0409	<s**2>=0.000</s**2>
Excited State 186 ->191 186 ->195 187 ->191 187 ->193 188 ->194 188 ->195 188 ->196 188 ->197	29:	Singlet-A 0.10996 0.17841 0.51105 0.11310 -0.18676 0.20334 0.14942 0.12599	4.7425 e	V 261.4	3 nm	f=0.0325	<s**2>=0.000</s**2>
Excited State 181 ->190 187 ->191 188 ->192 188 ->195 188 ->196 188 ->197 188 ->199 188 ->200 189 ->207	30:	Singlet-A -0.14587 -0.21994 0.10705 -0.21718 0.37978 0.32502 -0.15574 0.14302 0.12283	4.7566 e	∨ 260.6	6 nm	f=0.0635	<s**2>=0.000</s**2>
Excited State 185 ->190 188 ->192 188 ->195 188 ->196 189 ->207 189 ->209	31:	Singlet-A -0.26046 0.29132 0.13275 -0.15797 0.46981 -0.12589	4.7802 e	V 259.3	7 nm	f=0.4387	<s**2>=0.000</s**2>
Excited State 185 ->190	32:	Singlet-A -0.27383	4.7872 e	V 258.9	9 nm	f=0.5093	<s**2>=0.000</s**2>

188 ->192	0.30772
188 ->195	0.11970
189 ->207	-0.34065
189 ->208	0.35486

Table S19. Transition Energy, Wavelength, and Oscillator Strengths of the Electronic Transition of 5_{opt} Calculated at the TD-B3LYP/6-31+G(d) Level (The 189th Orbital is Highest Occupied π (Si=Si) Orbital Shown in Figure 3 in the Main Text)

Excited State 189 ->190	1:	Singlet-A 0.70441	1.8061 eV	686.47 nm	f=0.0710	<s**2>=0.000</s**2>
Excited State 188 ->190 189 ->191 189 ->192 189 ->193	2:	Singlet-A -0.15882 0.63103 0.13578 -0.18202	2.9112 eV	7 425.89 nm	f=0.1115	<s**2>=0.000</s**2>
Excited State 188 ->190 189 ->191 189 ->193	3:	Singlet-A 0.67655 0.11588 -0.11039	3.1107 eV	7 398.57 nm	f=0.0952	<s**2>=0.000</s**2>
Excited State 189 ->191 189 ->192	4:	Singlet-A -0.12303 0.68240	3.3704 eV	7 367.86 nm	f=0.0271	<s**2>=0.000</s**2>
Excited State 181 ->190 184 ->190 186 ->190 187 ->190	5:	Singlet-A 0.10029 0.36691 0.36695 0.45030	3.5190 eV	7 352.32 nm	f=0.0036	<s**2>=0.000</s**2>
Excited State 189 ->191 189 ->193 189 ->194	6:	Singlet-A 0.16839 0.64105 0.12416	3.5608 eV	7 348.20 nm	f=0.0339	<s**2>=0.000</s**2>
Excited State 189 ->194	7:	Singlet-A 0.67324	3.6974 eV	7 335.33 nm	f=0.0226	<\$**2>=0.000
Excited State 184 ->190 186 ->190 187 ->190 189 ->194	8:	Singlet-A -0.11469 -0.46626 0.49151 0.10688	3.7223 eV	7 333.08 nm	f=0.0078	<s**2>=0.000</s**2>
Excited State 184 ->190 185 ->190 186 ->190 188 ->192 189 ->195 189 ->197	9:	Singlet-A 0.28718 0.44489 -0.28940 0.23778 0.13705 -0.11092	3.8207 eV	7 324.51 nm	f=0.0355	<s**2>=0.000</s**2>
Excited State 182 ->190 184 ->190	10:	Singlet-A -0.10365 0.36971	3.8566 eV	7 321.49 nm	f=0.0150	<s**2>=0.000</s**2>

185 ->190 186 ->190 187 ->190 188 ->192 189 ->195 189 ->196 189 ->197 189 ->199		-0.15579 -0.20654 -0.14889 -0.10170 -0.33509 0.15522 0.23670 -0.11309				
Excited State 184 ->190 185 ->190 186 ->190 187 ->190 188 ->191 188 ->192 189 ->195 189 ->196 189 ->197	11:	Singlet-A -0.25792 0.34966 0.12112 0.10372 -0.13528 0.21201 -0.32218 0.17794 0.19653	3.8704 ev	320.34 nm	f=0.0701	<s**2>=0.000</s**2>
Excited State 188 ->191 189 ->196 189 ->197	12:	Singlet-A 0.48994 0.44874 -0.15665	3.9383 eV	314.82 nm	f=0.0116	<s**2>=0.000</s**2>
Excited State 188 ->191 189 ->195 189 ->196 189 ->197	13:	Singlet-A -0.42915 0.24947 0.46914 -0.11509	3.9705 eV	312.26 nm	f=0.0222	<s**2>=0.000</s**2>
Excited State 188 ->191 189 ->191 189 ->195 189 ->197 189 ->199 189 ->200	14:	Singlet-A 0.17993 0.11112 0.41915 0.46052 -0.11688 0.12436	4.0542 eV	305.81 nm	f=0.1074	<s**2>=0.000</s**2>
Excited State 181 ->190 182 ->190 183 ->190	15:	Singlet-A 0.33229 0.32566 0.50573	4.1841 eV	296.32 nm	f=0.0003	<s**2>=0.000</s**2>
Excited State 189 ->197 189 ->198	16:	Singlet-A 0.12578 0.68302	4.2380 eV	292.55 nm	f=0.0061	<s**2>=0.000</s**2>
Excited State 181 ->190 182 ->190 189 ->197 189 ->198 189 ->199 189 ->200	17:	Singlet-A 0.10233 -0.19961 -0.28930 0.11068 -0.38014 0.43056	4.3319 eV	286.21 nm	f=0.0056	<s**2>=0.000</s**2>
Excited State 181 ->190 182 ->190 183 ->190 184 ->190	18:	Singlet-A -0.11463 0.55233 -0.28573 0.17616	4.3497 eV	285.04 nm	f=0.0088	<s**2>=0.000</s**2>

189 ->199 -0.16781 189 ->200 0.15463 4.3710 eV 283.65 nm f=0.0012 <S**2>=0.000 Excited State 19: Singlet-A 0.35387 181 ->190 183 ->190 -0.23451 189 ->199 0.42393 189 ->200 0.34200 Excited State 20: Singlet-A 4.3753 eV 283.37 nm f=0.0102 <S**2>=0.000 181 ->190 0.44719 183 ->190 -0.29431 184 ->190 -0.10802 189 ->199 -0.27702 189 ->200 -0.33532 Excited State 21: Singlet-A 4.5581 eV 272.01 nm f=0.0056 <S**2>=0.000 189 ->201 0.60561 -0.15583 189 ->202 0.15001 189 ->205 189 ->206 0.22368 Excited State 22: Singlet-A 4.5699 eV 271.31 nm f=0.0607 <S**2>=0.000 180 ->190 -0.14183 0.66504 187 ->191 Excited State 23: 4.5970 eV 269.70 nm f=0.0447 <S**2>=0.000 Singlet-A 180 ->190 -0.13241 0.65507 186 ->191 187 ->194 0.12332 Excited State 24: Singlet-A 4.6391 eV 267.26 nm f=0.0038 <S**2>=0.000 -0.10701 179 ->190 180 ->190 0.38056 186 ->191 0.10748 187 ->191 0.10491 189 ->201 0.16702 0.41904 -0.28742 189 ->202 189 ->203 189 ->204 -0.10512 Excited State 25: Singlet-A 4.6443 eV 266.96 nm f=0.0094 <S**2>=0.000 179 ->190 -0.14154 180 ->190 0.49246 186 ->191 0.10540 187 ->191 0.10810 189 ->202 -0.38856 189 ->203 0.21005 Excited State 26: Singlet-A 4.6765 eV 265.12 nm f=0.0020 <S**2>=0.000 0.32395 189 ->202 189 ->203 0.58862 189 ->204 -0.17608 Excited State 27: Singlet-A 4.7034 eV 263.61 nm f=0.0715 <S**2>=0.000 0.26260 188 ->192 188 ->193 -0.30007 189 ->202 0.14146 0.51622 189 ->204 Excited State 28: Singlet-A 4.7125 eV 263.10 nm f=0.0636 <S**2>=0.000

S84

180 ->190 188 ->192 188 ->193 189 ->204		0.10717 -0.29331 0.47000 0.36426					
Excited State 189 ->205 189 ->206 189 ->213	29:	Singlet-A 0.54110 -0.38083 0.11025	4.7581	eV	260.58 nm	f=0.0136	<s**2>=0.000</s**2>
Excited State 189 ->201 189 ->204 189 ->205 189 ->206 189 ->213	30:	Singlet-A -0.28568 -0.15773 0.37978 0.45289 -0.10467	4.7642	eV	260.24 nm	f=0.0022	<s**2>=0.000</s**2>
Excited State 179 ->190 180 ->190 188 ->193	31:	Singlet-A 0.64082 0.18025 -0.12335	4.8098	eV	257.77 nm	f=0.0253	<s**2>=0.000</s**2>
Excited State 179 ->190 185 ->190 185 ->191 188 ->192 188 ->193	32:	Singlet-A -0.13988 0.25840 0.36072 -0.35262 -0.34454	4.8347	eV	256.45 nm	f=0.5903	<s**2>=0.000</s**2>

Table S20. Transition Energy, Wavelength, and Oscillator Strengths of the Electronic Transition of *syn*-6_{opt} Calculated at the TD-B3LYP/6-31+G(d) Level (The 331th Orbital is Highest Occupied π (Si=Si) Orbital Shown in Figure 3 in the Main Text)

Excited State 331 -> 332	1:	Singlet-A 0.70423	1.7258 eV	718.42 nm	f=0.1077	<s**2>=0.000</s**2>
Excited State 330 -> 332	2:	Singlet-A 0.70496	1.7785 eV	697.12 nm	f=0.0029	<s**2>=0.000</s**2>
Excited State 329 -> 332 330 -> 333 331 -> 334	3:	Singlet-A 0.43032 0.32999 0.41727	2.8514 eV	434.82 nm	f=0.2018	<s**2>=0.000</s**2>
Excited State 330 -> 334 330 -> 336 330 -> 342 331 -> 333 331 -> 337	4:	Singlet-A 0.38055 0.14264 0.11781 0.51479 -0.16759	2.8886 eV	429.22 nm	f=0.1181	<s**2>=0.000</s**2>
Excited State 329 -> 332 330 -> 333 330 -> 337 331 -> 334 331 -> 336	5:	Singlet-A 0.54210 -0.23985 0.14395 -0.27314 -0.13660	2.9418 eV	421.46 nm	f=0.1072	<s**2>=0.000</s**2>

331 -> 342 -0.10666 3.1305 eV 396.05 nm f=0.0019 <S**2>=0.000 Excited State 6: Singlet-A 330 -> 333 0.49392 331 -> 334 -0.44359 331 -> 335 0.22028 Excited State 7: Singlet-A 3.1396 eV 394.91 nm f=0.0003 <S**2>=0.000 330 -> 334 0.54188 330 -> 335 -0.14290 331 -> 333 -0.42436 Excited State 8: Singlet-A 3.2583 eV 380.52 nm f=0.0069 <S**2>=0.000 330 -> 333 -0.18715 331 -> 334 0.12940 331 -> 335 0.66024 Excited State 9: 3.3149 eV 374.02 nm f=0.0000 <S**2>=0.000 Singlet-A 0.68595 330 -> 335 331 -> 333 -0.11962 Excited State 10: 3.4682 eV 357.49 nm f=0.0404 <S**2>=0.000 Singlet-A -0.18583 330 -> 337 330 -> 339 0.11609 331 -> 336 0.59105 331 -> 342 -0.21176 331 -> 345 -0.12603 Excited State 11: 3.5077 eV 353.46 nm f=0.0176 <S**2>=0.000 Singlet-A 0.49285 330 -> 336 330 -> 340 -0.13681 330 -> 342 -0.18183 331 -> 337 -0.32472 331 -> 339 0.22867 Excited State 12: Singlet-A 3.5866 eV 345.69 nm f=0.0003 <S**2>=0.000 330 -> 337 0.31513 330 -> 339 -0.26324 0.11199 330 -> 341 331 -> 336 0.10047 331 -> 340 0.50753 331 -> 342 -0.13643 331 -> 345 -0.10164 Singlet-A 3.5985 eV 344.54 nm f=0.0037 <S**2>=0.000 Excited State 13: 0.30102 330 -> 336 330 -> 340 0.38959 330 -> 342 -0.19139 330 -> 345 -0.13065 331 -> 337 0.31100 331 -> 339 -0.23873 331 -> 341 0.12489 331 -> 354 -0.10817 Excited State 14: Singlet-A 3.6960 eV 335.45 nm f=0.0880 <S**2>=0.000 324 -> 332 0.14006 327 -> 332 -0.10960 329 -> 334 -0.14600 330 -> 333 0.15102 330 -> 337 0.12523 330 -> 339 0.25846

331 -> 334 331 -> 336 331 -> 338 331 -> 342 331 -> 345		0.10965 -0.16104 0.42418 -0.23260 -0.11576				
Excited State 326 -> 332 328 -> 332 329 -> 333 330 -> 334 330 -> 338 330 -> 340 330 -> 340 330 -> 342 331 -> 333 331 -> 337 331 -> 339	15:	Singlet-A -0.15404 -0.13803 -0.16440 0.16511 -0.10543 0.29018 -0.10357 -0.13776 0.12768 0.27099 0.39216	3.7143 eV	333.80 nm	f=0.1309	<s**2>=0.000</s**2>
Excited State 324 -> 332 325 -> 332 327 -> 332 329 -> 334 329 -> 335 331 -> 338	16:	Singlet-A 0.33334 -0.31264 -0.29508 -0.18309 0.31401 -0.19593	3.7298 eV	332.42 nm	f=0.0339	<s**2>=0.000</s**2>
Excited State 326 -> 332 328 -> 332 330 -> 338 331 -> 339	17:	Singlet-A 0.38826 0.53084 0.15544 0.11025	3.7401 eV	331.50 nm	f=0.0179	<s**2>=0.000</s**2>
Excited State 325 -> 332 330 -> 333 330 -> 337 330 -> 339 330 -> 341 331 -> 334 331 -> 340 331 -> 342 331 -> 345	18:	Singlet-A -0.10649 -0.12458 -0.16591 -0.11581 0.27261 -0.10756 0.41837 0.15294 0.27485 0.14946	3.7689 eV	328.97 nm	f=0.0891	<s**2>=0.000</s**2>
Excited State 330 -> 336 330 -> 338 330 -> 340 331 -> 337 331 -> 341	19:	Singlet-A -0.19558 0.36396 0.18460 -0.32426 0.39277	3.7754 eV	328.40 nm	f=0.0201	<s**2>=0.000</s**2>
Excited State 330 -> 337 331 -> 336 331 -> 340 331 -> 342	20:	Singlet-A 0.52694 0.26359 -0.20897 0.25598	3.8042 eV	325.91 nm	f=0.0027	<s**2>=0.000</s**2>
Excited State 326 -> 332 328 -> 332	21:	Singlet-A -0.17384 0.22090	3.8112 eV	325.32 nm	f=0.0121	<s**2>=0.000</s**2>

330 -> 340 -0.10575 330 -> 342 -0.18373 331 -> 339 -0.16809 331 -> 343 0.45691 331 -> 344 -0.30712 Excited State 22: Singlet-A 3.8185 eV 324.70 nm f=0.0008 <S**2>=0.000 0.16865 324 -> 332 325 -> 332 -0.23141 327 -> 332 0.60820 329 -> 334 -0.10966 Excited State 23: Singlet-A 3.8185 eV 324.69 nm f=0.0115 <S**2>=0.000 326 -> 332 0.38627 327 -> 332 -0.12993 328 -> 332 -0.31932 330 -> 336 0.15843 330 -> 338 0.14918 330 -> 340 -0.16184 0.11953 330 -> 342 0.15896 331 -> 337 0.23368 331 -> 343 331 -> 344 -0.18166 Excited State 24: 3.8241 eV 324.22 nm f=0.0424 <S**2>=0.000 Singlet-A 0.36071 326 -> 332 328 -> 332 -0.18070 329 -> 333 -0.18747 330 -> 336 -0.22013 330 -> 338 -0.17885 330 -> 340 0.11680 330 -> 342 -0.27603 330 -> 345 -0.14986 331 -> 337 -0.18564 331 -> 341 -0.15863 331 -> 354 -0.11718 Excited State 25: 3.8593 eV 321.26 nm f=0.0082 <S**2>=0.000 Singlet-A 324 -> 332 -0.10363 325 -> 332 -0.22638 330 -> 339 -0.31427 330 -> 343 0.41929 330 -> 344 -0.29697 331 -> 340 -0.19264 331 -> 342 -0.12355 Excited State 26: Singlet-A 3.8632 eV 320.94 nm f=0.0079 <S**2>=0.000 0.33064 $324 \rightarrow 332$ 0.51788 325 -> 332 329 -> 334 -0.15010 329 -> 335 0.13790 330 -> 339 -0.15088 330 -> 343 0.14598 330 -> 344 -0.11922 Singlet-A 3.9061 eV 317.41 nm f=0.0658 <S**2>=0.000 Excited State 27: 0.63043 329 -> 333 331 -> 339 0.12417 331 -> 341 -0.11785 331 -> 343 0.12648

Excited State 28: Sing. 324 -> 332 0.19109 0.62226 20919 3.9321 eV 315.31 nm f=0.0143 <S**2>=0.000 Singlet-A 329 -> 335 0.20919 Excited State 29: Singlet-A 3.9480 eV 314.04 nm f=0.0061 <S**2>=0.000 -0.21573 330 -> 338 330 -> 340 0.38981 330 -> 342 0.15234 330 -> 345 0.12806 331 -> 339 0.38592 331 -> 343 0.26777 331 -> 344 -0.11723 Excited State 30: Singlet-A 3.9609 eV 313.02 nm f=0.0001 <S**2>=0.000 330 -> 339 0.36821 Singlet-A 3.9641 eV 312.77 nm f=0.0097 <S**2>=0.000 Excited State 31: 330 -> 338 -0.36159

 330
 ->
 340
 -0.24837

 330
 ->
 342
 -0.19727

 331 -> 341 0.46635 Singlet-A 3.9787 eV 311.62 nm f=0.0001 <S**2>=0.000 Excited State 32: 330 -> 339 0.21285 330 -> 341 0.50195 330 -> 344 -0.14323 331 -> 338 -0.24800 331 -> 342 -0.13927 331 -> 345 0.28197

Table S21. Transition Energy, Wavelength, and Oscillator Strengths of the Electronic Transition of *anti*-6_{opt} Calculated at the TD-B3LYP/6-31+G(d) Level (The 331th orbital is Highest Occupied π (Si=Si) Orbital Shown in Figure 3 in the Main Text)

Excited State 331 -> 332	1:	Singlet-A 0.70431	1.7273 eV	717.81 nm	f=0.0974	<s**2>=0.000</s**2>
Excited State 330 -> 332	2:	Singlet-A 0.70507	1.7775 eV	697.51 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 329 -> 332 330 -> 333 331 -> 334	3:	Singlet-A 0.44622 0.31317 0.41560	2.8566 eV	434.03 nm	f=0.3173	<s**2>=0.000</s**2>
Excited State 330 -> 334 330 -> 336 330 -> 342 331 -> 333 331 -> 337 331 -> 341	4:	Singlet-A 0.40683 -0.13528 -0.10234 0.49889 -0.15615 -0.10149	2.8915 eV	428.79 nm	f=0.0118	<s**2>=0.000</s**2>

2.9396 eV 421.77 nm f=0.1241 <S**2>=0.000 Excited State 5: Singlet-A 329 -> 332 0.53021 330 -> 333 -0.23181 330 -> 337 0.14020 331 -> 334 -0.30193 331 -> 336 0.13061 Excited State 6: Singlet-A 3.1394 eV 394.92 nm f=0.0002 <S**2>=0.000 330 -> 334 0.50830 331 -> 333 -0.44432 331 -> 335 -0.18661 7: Excited State Singlet-A 3.1448 eV 394.25 nm f=0.0009 <S**2>=0.000 330 -> 333 0.53692 330 -> 335 0.12060 331 -> 334 -0.43451 Excited State 8: Singlet-A 3.2611 eV 380.19 nm f=0.0020 <S**2>=0.000 330 -> 334 0.15302 331 -> 333 -0.11775331 -> 335 0.66967 Excited State 9: 3.3163 eV 373.87 nm f=0.0101 <S**2>=0.000 Singlet-A 330 -> 335 0.69015 Excited State 10: 3.4705 eV 357.25 nm f=0.0556 <S**2>=0.000 Singlet-A 0.10761 330 -> 333 330 -> 337 0.18526 331 -> 336 0.58709 331 -> 342 -0.22595 331 -> 346 0.10971 Excited State 11: Singlet-A 3.5080 eV 353.43 nm f=0.0003 <S**2>=0.000 330 -> 336 0.50033 330 -> 339 -0.16077 330 -> 342 -0.18752 331 -> 337 0.32997 331 -> 338 0.12067 331 -> 341 -0.17091 Excited State 12: Singlet-A 3.5865 eV 345.70 nm f=0.0070 <S**2>=0.000 -0.30807 330 -> 337 330 -> 341 0.26593 331 -> 336 0.10138 331 -> 339 0.47606 331 -> 340 -0.20786 331 -> 342 -0.13511 Singlet-A 3.5986 eV 344.54 nm f=0.0001 <S**2>=0.000 Excited State 13: 0.29497 330 -> 336 330 -> 339 0.34733 330 -> 340 -0.20155 330 -> 342 -0.19842 330 -> 346 0.10828 331 -> 337 -0.31662 331 -> 341 0.25260 Excited State 14: Singlet-A 3.7104 eV 334.15 nm f=0.0091 <S**2>=0.000 0.19899 324 -> 332 325 -> 332 0.11591

327 -> 332 329 -> 333 329 -> 335 330 -> 334 330 -> 339 330 -> 340 331 -> 337 331 -> 338 331 -> 341		-0.14033 -0.20124 -0.13306 -0.12336 -0.19826 -0.17758 -0.27060 0.37092 -0.20224				
Excited State 326 -> 332 328 -> 332 329 -> 334 330 -> 333 330 -> 337 330 -> 341 331 -> 334 331 -> 336 331 -> 340 331 -> 342	15:	Singlet-A 0.18328 -0.14670 0.12849 0.15310 0.17261 -0.24163 0.14523 0.13185 0.15675 0.23561 0.28036 0.26937	3.7194 eV	333.34 nm	f=0.2663	<s**2>=0.000</s**2>
Excited State 324 -> 332 325 -> 332 327 -> 332 329 -> 333 329 -> 335 330 -> 340 331 -> 338	16:	Singlet-A -0.31125 -0.25072 0.25158 0.16072 0.29977 -0.14372 -0.12555 0.32367	3.7381 eV	331.68 nm	f=0.0221	<s**2>=0.000</s**2>
Excited State 326 -> 332 328 -> 332 330 -> 338 331 -> 340	17:	Singlet-A -0.39380 0.48054 -0.21126 0.19436	3.7477 eV	330.83 nm	f=0.0145	<s**2>=0.000</s**2>
Excited State 325 -> 332 329 -> 335 330 -> 334 330 -> 340 330 -> 342 330 -> 342 330 -> 346 331 -> 337 331 -> 338 331 -> 341	18:	Singlet-A 0.12335 -0.10854 0.12564 0.10283 -0.18447 0.10458 -0.10289 0.25144 0.35770 0.38636	3.7586 eV	329.87 nm	f=0.0131	<s**2>=0.000</s**2>
Excited State 328 -> 332 329 -> 334 330 -> 338 330 -> 341 331 -> 336 331 -> 340 331 -> 342 331 -> 343	19:	Singlet-A 0.19482 0.11602 0.38877 0.13996 0.13234 -0.20965 0.37130 0.15210	3.7800 eV	328.00 nm	f=0.1235	<s**2>=0.000</s**2>

3.7972 eV 326.51 nm f=0.0356 <S**2>=0.000 Excited State 20: Singlet-A 0.52120 330 -> 337 330 -> 338 0.14151 330 -> 341 0.17375 331 -> 336 -0.24065 331 -> 339 0.18022 331 -> 340 -0.20956 331 -> 342 -0.15185 Excited State 21: Singlet-A 3.8042 eV 325.91 nm f=0.0096 <S**2>=0.000 329 -> 333 0.10131 330 -> 336 0.34777 330 -> 339 -0.13103 330 -> 340 0.17645 0.35286 330 -> 342 330 -> 346 -0.12280 331 -> 337 -0.30321 Excited State 22: Singlet-A 3.8165 eV 324.86 nm f=0.0143 <S**2>=0.000 326 -> 332 -0.17472 328 -> 332 -0.24303 330 -> 341 -0.21054331 -> 339 0.19642 0.42319 331 -> 343 331 -> 346 0.29789 Excited State 23: 3.8280 eV 323.89 nm f=0.0086 <S**2>=0.000 Singlet-A 0.50585 326 -> 332 328 -> 332 0.37598 329 -> 334 -0.13065 330 -> 341 -0.12269 331 -> 343 0.17317 331 -> 346 0.13390 Excited State 24: Singlet-A 3.8281 eV 323.88 nm f=0.0010 <S**2>=0.000 0.19511 0.17642 324 -> 332 325 -> 332 327 -> 332 0.62315 329 -> 333 -0.10782 329 -> 335 -0.10573 Singlet-A 3.8555 eV 321.57 nm f=0.0007 <S**2>=0.000 Excited State 25:

 330 -> 339
 0.36058

 330 -> 342
 0.24112

 330 -> 343 0.41121 330 -> 346 0.23334 331 -> 338 0.12974 331 -> 341 -0.21185 Excited State 26: Singlet-A 3.8786 eV 319.66 nm f=0.0043 <S**2>=0.000 324 -> 332 -0.30577 325 -> 332 0.59659 329 -> 333 0.11746 329 -> 335 0.12662 Singlet-A 3.8943 eV 318.37 nm f=0.0910 <S**2>=0.000 Excited State 27: 0.65402 329 -> 334 330 -> 341 -0.15049 3.9170 eV 316.53 nm f=0.0005 <S**2>=0.000 Excited State 28: Singlet-A

S92

324 -> 332 329 -> 333 329 -> 335 331 -> 341		0.19265 0.60298 -0.19569 -0.16733				
Excited State 330 -> 338 330 -> 341 331 -> 339 331 -> 340 331 -> 343 331 -> 346	29:	Singlet-A 0.32628 -0.33918 0.34009 0.21529 -0.24063 -0.18889	3.9450 eV	314.29 nm	f=0.0011	<s**2>=0.000</s**2>
Excited State 330 -> 339 330 -> 340 330 -> 343 330 -> 346 331 -> 338 331 -> 341 331 -> 345	30:	Singlet-A 0.36980 0.11946 -0.36335 -0.25051 0.16435 -0.28543 0.12963	3.9600 eV	313.09 nm	f=0.0003	<s**2>=0.000</s**2>
Excited State 330 -> 338 330 -> 341 330 -> 348 331 -> 340 331 -> 342 331 -> 343	31:	Singlet-A 0.26534 0.34617 -0.12441 0.40442 -0.26063 0.17226	3.9635 eV	312.82 nm	f=0.0001	<s**2>=0.000</s**2>
Excited State 330 -> 340 330 -> 342 331 -> 338 331 -> 341 331 -> 344 331 -> 348	32:	Singlet-A 0.50759 -0.27761 0.20159 0.17570 -0.15449 -0.16808	3.9821 eV	311.35 nm	f=0.0018	<s**2>=0.000</s**2>

Table S22. Transition Energy, Wavelength, and Oscillator Strengths of the Electronic Transition of 7_{opt} Calculated at the TD-B3LYP/6-31+G(d) Level (The 331th Orbital is Highest Occupied π (Si=Si) Orbital Shown in Figure 3 in the Main Text)

Excited State 175 ->176 175 ->180 175 ->181	1:	Singlet-A 0.63897 0.13392 0.24525	2.8505 eV	434.96 nm	f=0.0824	<s**2>=0.000</s**2>
Excited State 175 ->177	2:	Singlet-A 0.70471	3.0855 eV	401.83 nm	f=0.0168	<s**2>=0.000</s**2>
Excited State 175 ->178 175 ->179	3:	Singlet-A 0.61004 -0.35405	3.5227 eV	351.96 nm	f=0.0011	<s**2>=0.000</s**2>
Excited State 175 ->180 175 ->181	4:	Singlet-A 0.67552 -0.17850	3.6053 eV	343.89 nm	f=0.0074	<s**2>=0.000</s**2>
Excited State	5:	Singlet-A	3.7058 eV	334.57 nm	f=0.0028	<s**2>=0.000</s**2>

175 ->178 175 ->179 0.35309 0.60782 3.7859 eV 327.49 nm f=0.2669 <S**2>=0.000 Excited State 6: Singlet-A 175 ->176 -0.27773 175 ->180 0.11580 175 ->181 0.60891 175 ->190 0.12321 Excited State 7: Singl 0.53717 Singlet-A 4.0111 eV 309.10 nm f=0.0005 <S**2>=0.000 175 ->183 -0.44697 Excited State 8: Singlet-A 4.0369 eV 307.13 nm f=0.0098 <S**2>=0.000 175 ->182 0.45199 175 ->183 0.53567 Excited State 9: 4.0617 eV 305.25 nm f=0.0040 <S**2>=0.000 Singlet-A 175 ->184 0.69721 Excited State 10: Singlet-A 4.2492 eV 291.78 nm f=0.0003 <S**2>=0.000 175 ->186 0.67386 175 ->191 0.12647 175 ->192 0.10654 4.3322 eV 286.19 nm f=0.0069 <S**2>=0.000 Excited State 11: Singlet-A 175 ->181 -0.12843 175 ->185 0.47347 175 ->188 -0.15277 175 ->190 0.39733 175 ->194 0.15209 175 ->195 -0.11247 175 ->196 0.13981 Excited State 12: Singlet-A 4.4056 eV 281.42 nm f=0.0001 <S**2>=0.000 0.10057 175 ->181 175 ->185 0.51753 175 ->188 0.17293 175 ->190 -0.33435 175 ->194 -0.18610 175 ->195 0.12079 175 ->196 -0.14981 4.4237 eV 280.27 nm f=0.0010 <S**2>=0.000 Excited State 13: Singlet-A 175 ->187 0.69844 Excited State 14: 4.4553 eV 278.29 nm f=0.0004 <S**2>=0.000 Singlet-A 0.66270 175 ->188 175 ->1900.18690 Excited State 15: Singlet-A 4.4890 eV 276.20 nm f=0.0017 <S**2>=0.000 0.70244 175 ->189 Singlet-A 4.6071 eV 269.11 nm f=0.0027 <S**2>=0.000 Excited State 16: -0.15189 175 ->186 175 ->191 0.64311 175 ->192 0.18955 Excited State 17: Singlet-A 4.6737 eV 265.28 nm f=0.0004 <S**2>=0.000 0.11526 171 ->178 171 ->178 0.11526 172 ->177 -0.15336

-0.13501 173 ->176 173 ->180 0.13428 0.63871 174 ->176 Excited State 18: Singlet-A 4.7375 eV 261.71 nm f=0.0207 <S**2>=0.000 0.48070 171 ->176 171 ->180 -0.11265 172 ->176 -0.32870 173 ->177 0.10331 173 ->178 -0.14019 174 ->177 0.21578 175 ->192 0.21275 Excited State 19: Singlet-A 4.7423 eV 261.44 nm f=0.0046 <S**2>=0.000 171 ->176 -0.16068 172 ->176 0.10733 175 ->191 -0.21402 175 ->192 0.62215 Excited State 20: Singlet-A 4.7688 eV 259.99 nm f=0.0342 <S**2>=0.000 171 ->176 0.44914 172 ->176 0.49866 173 ->178 0.11426 Singlet-A 4.7756 eV 259.62 nm f=0.0005 <S**2>=0.000 Excited State 21: 173 ->176 0.37933 -0.34193 175 ->190 175 ->194 0.38921 175 ->195 -0.20525 175 ->196 0.15056 Excited State 22: Singlet-A 4.7836 eV 259.19 nm f=0.0056 <S**2>=0.000 0.54258 173 ->176 174 ->176 0.15277 175 ->190 0.19544 175 ->194 -0.29202 175 ->195 0.12934 175 ->196 -0.10985 Excited State 23: 4.8449 eV 255.91 nm f=0.0020 <S**2>=0.000 Singlet-A 0.69465 175 ->193 Excited State 24: Singlet-A 4.8613 eV 255.04 nm f=0.0001 <S**2>=0.000 175 ->194 0.38405 175 ->195 0.57029 175 ->196 -0.11935 Excited State 25: Singlet-A 4.9386 eV 251.05 nm f=0.0080 <S**2>=0.000 175 ->198 0.66980 175 ->200 -0.13191 Excited State 26: Singlet-A 4.9483 eV 250.56 nm f=0.0004 <S**2>=0.000 -0.18781 175 ->194 175 ->195 0.25718 0.61430 175 ->196 Singlet-A 4.9885 eV 248.54 nm f=0.0117 <S**2>=0.000 Excited State 27: -0.13979 171 ->176 -0.10576 171 ->180 0.33166 172 ->176 173 ->178 -0.18288

173 ->179 174 ->177		0.11172 0.53196				
Excited State 171 ->178 172 ->177 174 ->176 175 ->197	28:	Singlet-A -0.10591 0.28018 0.11837 0.59464	5.0343 eV	246.28 nm	f=0.0032	<s**2>=0.000</s**2>
Excited State 171 ->178 171 ->179 172 ->177 173 ->176 173 ->180 173 ->181 174 ->176 175 ->197	29:	Singlet-A -0.18288 0.11070 0.45556 -0.10315 -0.16046 0.13227 0.18741 -0.36078	5.0437 eV	245.82 nm	f=0.0035	<s**2>=0.000</s**2>
Excited State 175 ->199	30:	Singlet-A 0.69072	5.0498 eV	245.52 nm	f=0.0033	<s**2>=0.000</s**2>
Excited State 175 ->192 175 ->198 175 ->200	31:	Singlet-A -0.10766 0.13111 0.67064	5.1312 eV	241.63 nm	f=0.0005	<s**2>=0.000</s**2>
Excited State 175 ->196 175 ->201	32:	Singlet-A 0.10909 0.68080	5.2190 eV	237.56 nm	f=0.0004	<s**2>=0.000</s**2>

Compound	Distance	Bent Angle θ /deg		Twist Angle	Dihedral	Dihedral
	d(Si=Si)/Å	$R^{H}_{2}Si$	SiArMes	τ/deg	Angle $\delta_{ m Ar}/ m deg$	Angle $\delta_{ m Mes}/ m deg$
1 _{opt}	2.189	14.0	28.4	1.9	83.2	88.5
anti-2 _{opt}	2.191	17.0	32.2	7.3	82.4	85.1
(Si8=Si9)						
(Si10=Si11)	2.191	16.1	30.9	0.5	88.8	86.9
syn-2opt	2.183	14.1	26.6	2.4	80.4	89.6
(Si8=Si9)						
(Si10=Si11)	2.189	15.3	29.4	11.2	64.1	82.8
anti-3 _{opt}	2.192	14.6	29.8	2.2	83.7	88.4
(Si1=Si2)						
(Si90=Si91)	2.192	14.7	30.0	1.7	84.9	88.2
syn-3opt	2.193	14.7	31.7	0.9	86.4	84.4
(Si1=Si2)						
(Si90=Si91)	2.199	16.9	34.5	12.6	79.2	83.8
4 _{opt}	2.164	0.7	0.1	0.2	73.0	70.7
5 _{opt}	2.174	14.4	18.5	12.0	59.7	73.6
syn-6 _{opt}	2.165	3.5	1.5	3.9	70.5	71.0
anti-6 _{opt}	2.163	1.7	0.1	1.3	71.7	70.0
7 _{opt}	2.169	0.0	0.0	8.0	-	70.9, 70.8

Table. S23. Selected Structural Parameters of Disilenes 1_{opt} - 7_{opt} .

B3LYP/6-31+G(d)//B3PW91-D3/6-31G(d) level of theory (isosuface value = 0.04).

Figure S51. Frontier Kohn-Sham orbitals and their energy levels of 4_{opt} - 7_{opt} at the B3LYP/6-31+G(d)//B3PW91-D3/6-31G(d) level of theory (isosuface value = 0.04).