Supplementary Information

Long-range emissive mega-Stokes inorganic-organic hybrid material with peripheral carboxyl functionality for As (V) recognition and its application in bioimaging

M. Venkateswarulu, aDiksha Gambhir, Harpree tKaur, P. VineethDaniel, Prosenjit Mondal, A

and Rik Rani Koner^{b*}

^aSchool ofBasic Sciences, Indian Institute of Technology Mandi, Mandi-175001, H.P, India.

^bSchool of Engineering, Indian Institute of Technology Mandi, Mandi-175001, H.P, India.

S. No	Contents	No.
1	Comparison of potential of PTCA-Cu2 ⁺ towards detection of As ⁵⁺ with other reported As ⁵⁺ specific/selective molecular probes	Table S1
2	¹ H NMR spectra of Perylene tetracarboxylic acid (PTCA)	Figure S1
3	¹³ C NMR spectra of PTCA	Figure S2
4	HRMS spectra of probe PTCA	Figure S3
5	HRMS spectra of PTCA-Cu ²⁺	Figure S4
6	Crystal data and structure refinement for PTCA - Cu ⁺²	Table S2
7	Molecular and Packing diagram of PTCA-Cu ²⁺	Figure S5 to S9
8	UV-vis spectra of PTCA-Cu ²⁺	Figure S10
9	Fluorescence spectra of PTCA-Cu ²⁺ upon the addition of As ⁵⁺	Figure S11
10	UV-vis and fluorescence spectra of PTCA-Cu ²⁺ with different analytes	Figure S12
11	UV-vis spectra of PTCA-Cu ²⁺ upon gradual addition of As ⁵⁺	Figure S13

12	Fluorescence spectra of PTCA-Cu ²⁺ upon the gradual addition of As ⁵⁺ and at different slit widths	Figure S14
13	Fluorescence spectra of PTCA-Cu ²⁺ and H ₄ PTCAupon the addition of As ⁵⁺ (excitationat 441 and 472 nm)	Figure S15
14	HRMS spectra of PTCA-Cu ²⁺ upon titrated with Na ₂ HAsO ₄	Figure S16
15	Benesi-Hildebrand method for the calculation of binding constant for H_4 PTCAupon gradual addition of Cu ²⁺ ion solution	Figure S17
16	Benesi-Hildebrand method for the calculation of binding constant for PTCA+Cu ²⁺ upon gradual addition of As ⁵⁺ ion solution.	Figure S18
17	Fluorescence response of PTCA-Cu ²⁺ in presence of As ⁵⁺ at different pH values	Figure S19
18	Plot of fluorescence intensity of PTCA-Cu ²⁺ against the concentration of As ⁵⁺	Figure S20
19	Fluorescence spectra of PTCA-Cu ²⁺ (10μM) in DMSO: River water upon the addition of increasing quantities of As ⁵⁺	Figure S21
20	Fluorescence spectra of PTCA-Cu ²⁺ (10μM) in DMSO: Tap water with gradual addition of As ⁵⁺	Figure S22
21	Ground-state optimized structure of H ₄ PTCA.	Figure S23
22	Frontier molecular orbitals of H₄PTCA	Figure S24
23	Frontier molecular orbitals of PTCA –Cu ²⁺	Figure S25
24	Optimized structure of the PTCA –As ⁵⁺ complex.	Figure S26
25	Frontier molecular orbital's of PTCA –As ⁵⁺	Figure S27
26	Time dependent-Density Functional Theory (TD-DFT) derived absorption spectra of H₄PTCA	Figure S28
27	TD-DFT derived absorption spectra of PTCA -Cu ²⁺	Figure S29
28	TD-DFT derived absorption spectra of PTCA –As ⁵⁺	Figure S30
29	Effect of PTCA-Cu ²⁺ concentration on HepG2 cells viability.	Figure S31

Table S1: Comparison of potential of PTCA-Cu²⁺complextowards As⁵⁺ ion detection with other reported As⁵⁺ ion -specific/selective molecular probes.

Sensitive dye	Excitation/ Emission	Solvent system	Reference
	Tange		
APSAL	$\lambda_{ex} = 350$ nm $\lambda_{em} = 498$ nm	HEPES buffer (Methanol: water)	S. Lohar, A. Sahana, A. Banerjee, A. Banik, S. K. Mukhopadhyay, J. Sanmartín Matalobos and D. Das, <i>Anal. Chem.</i> , 2013, 85 , 1778–1783.
Arsenofluorl	$\lambda_{ex} = 385 nm$ $\lambda_{em} = 496 nm$	THF	V. C. Ezeh and T. C. Harrop, <i>Inorg. Chem.</i> , 2012, 51 , 1213–1215.
DFPPIC	$\lambda_{ex} = 400 \text{nm}$ $\lambda_{em} = 530 \text{ nm}$	HEPES buffer	S. Nandi, A. Sahana, B. Sarkar, S. K. Mukhopadhyay and D. Das, <i>J. Fluoresc.</i> , 2015, 25 , 1191–1201.
APC	$\lambda_{ex} = 440 \text{nm}$ $\lambda_{em} = 532 \text{nm}$	HEPES buffer	A. Banerjee, A. Sahana, S. Lohar, S. Panja, S. K. Mukhopadhyay and D. Das, <i>RSC Adv.</i> , 2013, 4 , 3887–3892.
Cu(II)complex [Cu(n-BuM)(DEA)] _n	$\lambda_{ex} = 250 \text{nm}$ $\lambda_{em} = 380 \text{nm}$	Aq solution	 B. Dey, P. Mukherjee, R. K. Mondal, A. P. Chattopadhyay, I. Hauli, S. K. Mukhopadhyay and M. Fleck, <i>Chem. Commun.</i>, 2014, 50, 15263–15266.
Schiff base	$\lambda_{\rm ex} = 438 \text{ nm}$ $\lambda_{\rm em} = 532 \text{ nm}$	DMSO/H ₂ O (1:9)	S. Lohar, S. Pal, B. Sen, M. Mukherjee, S. Banerjee, and P. Chattopadhyay, <i>Anal. Chem.</i> 2014, 86 , 11357–11361.
New Cu(II)complex (PTCA-Cu ²⁺)	$\lambda_{\rm ex} = 497 \text{ nm}$ $\lambda_{\rm em} = 600 \text{ nm}$	HEPES buffer	Present Work

Figure S1.¹H NMR spectra of H_4PTCA in D_2O .

Figure S2.¹³C NMR spectra of H_4PTCA in D_2O .

Figure S3.HRMS spectra of H₄PTCA in CH₃CN.

Figure S4.HRMS spectra of PTCA-Cu²⁺ in CH₃CN.

FigureS5. Ball and stick view of PTCA-Cu²⁺ complex.

1	Identification code	PTCA-Cu ²⁺
2	Empirical formula	C ₁₆ H ₂₇ CuN ₅ O ₉
3	Formula weight	496.97
4	Temperature/K	293(2)
5	Crystal system, Space group	Monoclinic,P2 ₁ / _c
6	Unit cell dimension	a =8.579Å, b= 11.285Å, c = 22.518Å α = 90.14, β = 97.84, γ = 89.93
7	Volume/Å ³	2159.6
8	Z, Calculated density	4
9	F(000)	1036.0
10	Crystal size/mm ³	0.1341 X 0.1213 X 0.0717
11	Two Theta range for data	8.78 to 133.74

Table 52.Crystal data and Structure Refinement for TTCA - Cu-	Table S2.Crystal dat	a and Structure Refin	nement for PTCA - Cu ²⁺
---	----------------------	-----------------------	------------------------------------

	collection	
12	Limiting indices(Index ranges)	-8≤h≤10, -13≤k≤9,-23≤1≤26
13	Reflections collected / unique	7113
14	Data/restraints/parameters	3718/4/299
15	Goodness of fit on F ²	1.030
16	Final R indexes [I>=2σ (I)]	$R_1 = 0.0432, wR_2 = 0.1096$
17	R indexes [all data]	$R_1=0.0452, wR_2=0.1116$
18	Largest diff. peak/hole / eÅ ⁻³	1.04/-0.63

Table S3. Selected Bond Lengths (Å) and angles (deg) of PTCA- Cu^{2+} complex.

Bonds	Distance/Angle
O1-Cu1	2.552
O2-Cu1	2.415
N1-Cu1	2.01
N2-Cu1	1.99
N3-Cu1	2.02
N4-Cu1	2.00
O1-Cu1-O2	170.79
N1-Cu1-N2	84.62
N3-Cu1-N4	84.91
N1-Cu1-N3	95.11
N2-Cu1-N4	95.17

Figure S6.Hydrogen bond between the uncoordinated carboxylate oxygen , aqua molecule and NH of the ethylene diamine unit.

Figure S7. The carboxylate unit forms hydrogen bond with coordinated aqua molecule (Cu-H₂O••••OOC-Cu).

Figure S8. The free carboxylate unit forms hydrogen bonds with coordinated aqua molecule (Cu—H₂O••••OOC-) of neighbouring unit.

Figure S9. Hydrogen bonds between the uncoordinated carboxylate and solvent molecules.

Figure S10: UV-vis spectra of H_4PTCA and $PTCA-Cu^{2+}$ (10µM) in DI H₂O buffered with HEPES (1mM), pH = 7.2.

Figure S11.Fluorescence spectra of **PTCA-Cu²⁺** (10 μ M) inDI H₂O buffered withHEPES (1 mM), pH = 7.2 upon the addition of As⁵⁺ (166 μ M) (excitation at 497 nm and emission at 600 nm and slit width 5/10)

Figure S12a). UV-vis spectra and b) Fluorescence spectra of PTCA-Cu²⁺ (10 μ M) inDI H₂O buffered withHEPES (1 mM), pH = 7.2 upon the addition of 166 μ M different anions (Cl⁻, F⁻, Br⁻, HSO₄⁻, CN⁻, NO₃⁻, PO₄³⁻, ClO₄⁻ and CH₃COO⁻) and cations(As³⁺, As⁵⁺, Li⁺, Na⁺, K⁺, Ca²⁺, Mg²⁺, Fe²⁺, Fe³⁺, Mn²⁺, Co²⁺, Ni²⁺, Cd²⁺, Hg²⁺, Zn²⁺, Sn²⁺, Sr²⁺, Al³⁺, Cr³⁺, Bi²⁺, Sb²⁺).

Figure S13. UV-vis spectra of **PTCA-Cu**²⁺ (10 μ M) in DI H₂O buffered withHEPES (1 mM), pH = 7.2 upon the addition of increasing quantities of As⁵⁺ (0 to 166 μ M) (**inset**: UV-vis spectra of H₄PTCA and upon addition of As⁵⁺).

Figure S14a-d.Fluorescence spectra of **PTCA-Cu**²⁺ (10 μ M) inDI H₂O buffered withHEPES (1 mM), pH = 7.2 upon the addition of As⁵⁺ (166 μ M) (excitation at 497 nm and emission at 600 nm and slit width 5/5, 10/5, 5/20 and 10/10 respectively.

Figure S14e.Fluorescence spectra of **PTCA-Cu²⁺** (10 μ M) in DI H₂O buffered withHEPES (1 mM), pH = 7.2 upon the addition of increasing quantities of As⁵⁺ (0 to 166 μ M)(excitation at 497 nm and emission at 600 nm and slit width 5/10).

Figure S15a.Fluorescence spectra of **PTCA-Cu**²⁺(10 μ M) in DI H₂O buffered with HEPES (1mM), pH = 7.2 upon the addition of As⁵⁺ion (0 to 166 μ M) (excitation at 441 nm and 472 nm respectively and emission at 600 nm)

Figure S15b. Emission spectra of H_4PTCA (10 µM) in H₂O buffered withHEPES (1 mM), pH = 7.2 upon the addition of 166 µM different anions (Cl⁻, F⁻, Br⁻, HSO₄⁻, CN⁻, NO₃⁻, PO₄^{3⁻}, ClO₄⁻ and CH₃COO⁻) excitation at 497 nm and emission at 600 nm.

Figure S16a.HRMS spectra of PTCA-Cu⁺² upon titrated with Na₂HAsO₄in acetonitrile. (PTCA-2(AsH₃O₄)+2H⁺)-C₂₄H₂₀As₂O₁₆⁺²713.9183.

Figure S16b.HRMS spectra of PTCA-Cu⁺² upon titrated with Na₂HAsO₄ in CH₃CN.

Binding constant calculation

Methods for association or stability constant calculation: Binding properties of PTCA-Cu²⁺towards with As⁵⁺ complexes were determined by fluorescence titrations. All the measurements were performed by titrating PTCA-Cu²⁺ with As⁵⁺ ion in H₂O (HEPES buffered, pH ~7.2) at 25°C. Initial concentrations of the PTCA-Cu²⁺ and As⁵⁺ were 10 μ M and 1mM, respectively. Each titration was performed by several measurements with varying metal ion concentrations in order to avoid dilution error, and the association constants were calculated using Benesi-Hildebrand method.

Figure S17.Benesi-Hildebrand method for the calculation of binding constant for H_4 PTCAupon gradual addition of Cu²⁺ion solution (Excitation at 497 nm in H₂O buffered with HEPES (1 mM), pH = 7.2.Solution was incubated for 5 min at 25°C.

Figure S18.Benesi-Hildebrand method for the calculation of binding constant for PTCA+Cu²⁺upon gradual addition of As⁺⁵ion solution (Excitation at 497 nm in H₂O buffered with HEPES (1 mM), pH = 7.2.Solution was incubated for 5 min at 25°C.

Figure S19. Fluorescence response of PTCA-Cu²⁺(10 μ M) in H₂O buffered with HEPES (1 mM) at different pH values ($\lambda ex = 497$ nm) upon addition of different concentrations of Na₂HAsO₄.

Figure S20.Plot of fluorescence intensity of **PTCA-Cu**²⁺(10 μ M) in DI H₂O buffered with HEPES (1 mM, pH = 7.2), excitation at 497 nm as a function of the concentration of As⁵⁺.

Detection of As⁵⁺ ion in real samples:

River water and tap water were used as real samples for analysis of As^{5+} ion. These real samples used as solvents for the preparation of different concentrations of As^{5+} ion standard solutions to record the fluorescence spectra. The detection procedure for river water and tap water is the same as that used above. We are in the process of collecting various real-world samples which contain As^{5+} ion and would like to apply our probe in future to detect the presence of those metal ions.

Figure S21.Fluorescence spectra of PTCA-Cu²⁺ (10 μ M) in DMSO: River water (, v/v) upon the addition of increasing quantities of As⁵⁺ (0 to 150 μ M)(excitation at 497 nm and emission at 600 nm).Solution was incubated for 5 min at 25°C.

Figure S22.Fluorescence spectra of PTCA-Cu²⁺ (10 μ M) in DMSO: Tap water (, v/v) upon the addition of increasing quantities of As⁵⁺ (0 to 150 μ M)(excitation at 497 nm and emission at 600 nm).Solution was incubated for 5 min at 25°C.

Figure S23. Ground-state optimized structure of H₄PTCA.

Figure S24. Frontier molecular orbital's of H₄PTCA (isocontour at 0.03 au).

Figure S25. Frontier molecular orbitals of PTCA-Cu²⁺ complex (isocontour at 0.03 au).

FigureS26. Optimized structure of the PTCA –As⁵⁺complex.

FigureS27. Frontier molecular orbitals of PTCA –As⁵⁺complex (isocontour at 0.03 au).

Figure S28. TD-DFT derived absorption spectra of the H₄PTCA.

Figure S29. TD-DFT derived absorption spectra of PTCA-Cu²⁺ complex (isocontour at 0.03

au).

Figure S30. TD-DFT derived absorption spectra of PTCA-As⁵⁺ complex (isocontour at 0.03 au).

Figure S31.Effect of PTCA-Cu²⁺ on HepG2 cells viability. (a) HepG2 cells were exposed to different doses of PTCA-Cu²⁺ for 24h andMTT assay were performed to determine the viability. Viability was represented as percentage (%) of control. All data wererepresented as Mean \pm SE (Standard Error) of two-three independent experiments in triplicate.