Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Electronic supplementary information (ESI)

Chiral six-coordinate Dy(III) and Tb(III) complexes of an achiral ligand:

Structure, fluorescence, and magnetism

Mei-Jiao Liu,^a Juan Yuan,^a Yi-Quan Zhang,*,^b Hao-Ling Sun,^c Cai-Ming Liu,^d and

Hui-Zhong Kou*,a

^a Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China. Email: kouhz@mail.tsinghua.edu.cn
 ^b Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology,

Nanjing Normal University, Nanjing 210023, P. R. China. E-mail: zhangyiquan@njnu.edu.cn

^c Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing Normal University, Beijing 100875, P. R. China

^d Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

Fig. S1. Crystals under ordinary microscope for complexes 1 (left) and 2 (right).

Fig. S2. Crystals under polarizing microscope from 0° to 85° for complex 1 (five degrees apart).

Fig. S3. Crystal structure of the ligand. Hydrogens have been omitted for clarity.

Fig. S4. Main molecular structure of complexes Λ -1 (a), Λ -2 and Δ -2 (c). Hydrogens and solvents have been omitted for clarity.

Fig. S5. The IR spectra for the ligand H_2L (red), complex 1 (black) and 2 (blue).

Fig. S6. The solution circular dichroism (CD) spectrum in methanol for complex 1 (100 µmol/L).

Fig. S7. Powdered X-ray diffraction (XRD) patterns for complexes 1 and 2.

Fig. S8. The solution UV-Vis spectroscopies in methanol for the ligand (red), ZnCl₂-H₂L (brown), complex 1 (green) and complex 2 (blue).

Fig. S9. The out-of-phase component (χ ") vs. external dc field (H) for complex 1 at 2 K with an oscillation of 2.0 Oe and frequencies of 10 Hz and 100 Hz.

Fig. S10. Temperature dependence of the out-of-phase component (χ ") for complex 2 at 997 Hz.

Fig. S11. Temperature dependence of the out-of-phase component (χ ") for diluted sample (Dy_{0.05}Y_{0.95}) of complex 1 at 997 Hz.

Fig. S12. Calculated complete structure of complex 1; H atoms are omitted.

Fig. S13. Orientation of the local main magnetic easy axis of the ground Kramers doublet on Dy^{III} of complex 1.

 Table S1. Calculation results of the lowest Kramers doublets (KDs) of Dy^{III} for complex 1.

KDa	Complex 1				
KD5	E/cm^{-1}	g		m_J	
1	0.0	gx	0.089	±15/2	
		g_{y}	3.935		
		gz	15.492		
2	35.2	gx	0.339		
		g_{y}	3.069	±3/2	
		gz	14.160		
3	71.8	gx	0.540		
		g_{y}	1.310	±1/2	
		gz	16.026		
4	169.7	gx	6.386		
		$g_{ m y}$	6.797	±5/2	
		gz	7.993		
5	294.6	gx	0.686	±11/2	

		$g_{ m y}$	2.376	
		$g_{ m z}$	11.548	
		$g_{\rm x}$	0.306	
6	318.5	$g_{ m y}$	1.562	$\pm 13/2$
		gz	12.414	
		gx	1.182	
7	376.0	$g_{ m y}$	2.030	±7/2
		gz	16.048	
		gx	0.013	
8	543.9	$g_{ m y}$	0.035	$\pm 9/2$
		gz	19.105	

Table S2. In wave functions with definite projection of the total moment $|m_J\rangle$ for the lowest two Kramers doublets (KDs) of the Dy^{III} for complex **1**.

	<i>E</i> /cm ⁻¹	wave functions
1 -	0.0	72% ±15/2> + 5% ±7/2> + 5% ±3/2> + 10% ±1/2>
	35.1	$17\% \pm 15/2> + 5\% \pm 13/2> + 13\% \pm 5/2> + 24\% \pm 3/2> + 35\% \pm 1/2>$