Supporting Information

# N-heterocyclic carbene adducts of the heavier group 15 tribromides. Normal to abnormal isomerism and bromide ion

# abstraction.

Jordan B. Waters, Qien Chen, Thomas A. Everitt and Jose M. Goicoechea<sup>\*</sup>

Department of Chemistry, University of Oxford, Chemistry Research Laboratory,

12 Mansfield Road, Oxford, OX1 3TA, U.K.

E-mail: jose.goicoechea@chem.ox.ac.uk

**CONTENTS:** 

- 1. Single crystal X-ray diffraction data
- 2. NMR spectra
- 3. ESI-MS spectra
- 4. Computational details

|                                                 | [ <b>1</b> ]·2THF          | [ <b>2</b> ]·0.5THF            | [ <b>3</b> ][AlBr <sub>4</sub> ]·0.5DCM | [ <b>4</b> ][AlBr <sub>4</sub> ]·0.5DCM                                |
|-------------------------------------------------|----------------------------|--------------------------------|-----------------------------------------|------------------------------------------------------------------------|
| Formula                                         | $C_{35}H_{52}Br_3N_2O_2Sb$ | $C_{29}H_{40}BiBr_3N_2O_{0.5}$ | C27.5H37AlBr6ClN2Sb                     | C <sub>27.5</sub> H <sub>37</sub> AlBiBr <sub>6</sub> ClN <sub>2</sub> |
| Fw [g mol <sup>-1</sup> ]                       | 894.26                     | 873.34                         | 1059.23                                 | 1146.46                                                                |
| Crystal system                                  | Monoclinic                 | Monoclinic                     | Triclinic                               | Triclinic                                                              |
| Space group                                     | $P2_{1}/n$                 | $P2_{1}/c$                     | PError!                                 | PError!                                                                |
| <i>a</i> (Å)                                    | 12.9636(3)                 | 35.3941(3)                     | 12.2078(3)                              | 12.2474(3)                                                             |
| <i>b</i> (Å)                                    | 20.2935(4)                 | 17.9516(1)                     | 17.4963(3)                              | 17.4318(6)                                                             |
| <i>c</i> (Å)                                    | 14.3419(3)                 | 20.0953(2)                     | 18.3277(4)                              | 18.3406(6)                                                             |
| α (°)                                           | 90                         | 90                             | 76.528(2)                               | 77.136(2)                                                              |
| β (°)                                           | 96.532(2)                  | 95.253(1)                      | 79.988(2)                               | 79.952(2)                                                              |
| γ (°)                                           | 90                         | 90                             | 81.945(2)                               | 82.507(2)                                                              |
| $V(Å^3)$                                        | 3748.53(14)                | 12714.54(18)                   | 3728.61(14)                             | 3741.60(20)                                                            |
| Ζ                                               | 4                          | 16                             | 4                                       | 4                                                                      |
| Radiation, $\lambda$ (Å)                        | Cu Kα, 1.54184             | Cu Kα, 1.54184                 | Cu Kα, 1.54184                          | Cu Ka, 1.54184                                                         |
| $\rho_{calc}$ (g cm <sup>-3</sup> )             | 1.585                      | 1.825                          | 1.887                                   | 2.035                                                                  |
| $\mu (mm^{-1})$                                 | 9.821                      | 15.457                         | 14.440                                  | 17.789                                                                 |
| Reflections collected                           | 75905                      | 202772                         | 50023                                   | 41661                                                                  |
| Independent reflections                         | 7831                       | 26537                          | 15405                                   | 15503                                                                  |
| Parameters                                      | 462                        | 1293                           | 694                                     | 679                                                                    |
| R(int)                                          | 0.0673                     | 0.0714                         | 0.0410                                  | 0.0325                                                                 |
| $R1/wR2$ , <sup>[a]</sup> $I \ge 2\sigma I$ (%) | 4.66/12.07                 | 4.86/12.54                     | 4.04/10.54                              | 3.99/10.38                                                             |
| R1/wR2, <sup>[a]</sup> all data (%)             | 5.07/12.62                 | 5.07/12.73                     | 4.31/11.00                              | 4.09/10.48                                                             |
| GOF                                             | 1.046                      | 1.108                          | 1.058                                   | 1.058                                                                  |

### 1. Single crystal X-ray diffraction data

<sup>[a]</sup> R1 =  $[\Sigma ||F_o| - |F_c||] / \Sigma |F_o|$ ; wR2 = { $[\Sigma w[(F_o)^2 - (F_c)^2]^2] / [\Sigma w(F_o^2)^2]^{1/2}$ ; w =  $[\sigma^2(F_o)^2 + (AP)^2 + BP]^{-1}$ , where P =  $[(F_o)^2 + 2(F_c)^2] / 3$  and the A and B values are 0.0678 and 9.31 for [1]·2THF, 0.0589 and 167.06 for [2]·0.5THF, 0.0644 and 15.87 for [3][AlBr\_4]·0.5DCM and 0.0620 and 16.80 for [4][AlBr\_4]·0.5DCM.

|                                                 | [ <b>5</b> ]·2THF          | <b>[6]</b> ·2THF           | [ <b>6</b> ]·0.5DCM         | $[7][BAr^{F_4}] \cdot 4THF$       |
|-------------------------------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------------|
| Formula                                         | $C_{35}H_{52}Br_3N_2O_2Sb$ | $C_{35}H_{52}BiBr_3N_2O_2$ | $C_{27.5}H_{37}BiBr_3ClN_2$ | $C_{75}H_{80}BBr_2F_{24}N_2O_4Sb$ |
| Fw [g mol <sup>-1</sup> ]                       | 894.26                     | 981.49                     | 879.75                      | 1821.79                           |
| Crystal system                                  | Triclinic                  | Triclinic                  | Monoclinic                  | Triclinic                         |
| Space group                                     | PError!                    | PError!                    | $P2_{1}/c$                  | PError!                           |
| <i>a</i> (Å)                                    | 11.8063(3)                 | 11.105(2)                  | 12.1007(2)                  | 13.2348(2)                        |
| <i>b</i> (Å)                                    | 11.8231(2)                 | 11.908(2)                  | 35.0892(5)                  | 16.9730(4)                        |
| <i>c</i> (Å)                                    | 15.2363(3)                 | 15.263(3)                  | 14.9693(2)                  | 18.9206(4)                        |
| α (°)                                           | 98.938(2)                  | 98.77(3)                   | 90                          | 72.072(2)                         |
| β (°)                                           | 101.958(2)                 | 102.17(3)                  | 98.858(1)                   | 83.509(2)                         |
| γ (°)                                           | 95.680(2)                  | 96.09(3)                   | 90                          | 87.014(2)                         |
| $V(\text{\AA}^3)$                               | 1912.17(7)                 | 1929.7(7)                  | 6280.21(16)                 | 4017.25(15)                       |
| Ζ                                               | 2                          | 2                          | 8                           | 2                                 |
| Radiation, $\lambda$ (Å)                        | Cu Ka, 1.54184             | Μο Κα, 0.71703             | Cu Ka, 1.54184              | Cu Ka, 1.54184                    |
| $\rho_{calc} (g \ cm^{-3})$                     | 1.553                      | 1.689                      | 1.861                       | 1.506                             |
| $\mu$ (mm <sup>-1</sup> )                       | 9.626                      | 7.705                      | 16.405                      | 4.802                             |
| Reflections collected                           | 38814                      | 31667                      | 78548                       | 81697                             |
| Independent reflections                         | 7943                       | 6703                       | 13121                       | 16691                             |
| Parameters                                      | 426                        | 426                        | 622                         | 1092                              |
| R(int)                                          | 0.0402                     | 0.0357                     | 0.0549                      | 0.0541                            |
| $R1/wR2$ , <sup>[a]</sup> $I \ge 2\sigma I$ (%) | 4.30/11.05                 | 4.63/12.09                 | 5.34/13.85                  | 5.84/15.70                        |
| R1/wR2, <sup>[a]</sup> all data (%)             | 4.60/11.44                 | 5.52/12.63                 | 5.36/13.87                  | 6.22/16.15                        |
| GOF                                             | 1.045                      | 1.052                      | 1.172                       | 1.049                             |

<sup>[a]</sup> R1 =  $[\Sigma ||F_o| - |F_c||] / \Sigma |F_o|$ ; wR2 = { $[\Sigma w[(F_o)^2 - (F_c)^2]^2] / [\Sigma w(F_o^2)^2]^{1/2}$ ; w =  $[\sigma^2(F_o)^2 + (AP)^2 + BP]^{-1}$ , where P =  $[(F_o)^2 + 2(F_c)^2] / 3$  and the A and B values are 0.0584 and 3.77 for [**5**] · 2THF, 0.0751 and 4.26 for [**6**] · 2THF, 0.0781 and 40.31 for [**6**] · 0.5DCM and 0.0816 and 6.85 for [**7**][BArF\_4] · 4THF.

|                                              | [ <b>8</b> ][BAr <sup>F</sup> <sub>4</sub> ]·4.5THF | [ <b>9</b> ]Br·0.5THF          | [ <b>9</b> ][AlBr <sub>4</sub> ]                                    |
|----------------------------------------------|-----------------------------------------------------|--------------------------------|---------------------------------------------------------------------|
| Formula                                      | $C_{77}H_{84}BBiBr_2F_{24}N_2O_{4.5}$               | $C_{56}H_{76}Br_3N_4O_{0.5}Sb$ | C <sub>54</sub> H <sub>72</sub> AlBr <sub>6</sub> N <sub>4</sub> Sb |
| Fw [g mol <sup>-1</sup> ]                    | 1945.07                                             | 1174.68                        | 1405.34                                                             |
| Crystal system                               | Triclinic                                           | Monoclinic                     | Orthorhombic                                                        |
| Space group                                  | PError!                                             | $P2_{1}/n$                     | $P2_{1}2_{1}2_{1}$                                                  |
| <i>a</i> (Å)                                 | 12.7012(3)                                          | 14.8865(2)                     | 10.5273(1)                                                          |
| <i>b</i> (Å)                                 | 18.9400(4)                                          | 18.9920(2)                     | 18.6503(1)                                                          |
| <i>c</i> (Å)                                 | 19.7427(4)                                          | 20.8333(2)                     | 30.8129(2)                                                          |
| α (°)                                        | 113.243(2)                                          | 90                             | 90                                                                  |
| β (°)                                        | 93.206(2)                                           | 98.610(1)                      | 90                                                                  |
| γ (°)                                        | 106.828(2)                                          | 90                             | 90                                                                  |
| $V(Å^3)$                                     | 4098.06(17)                                         | 5823.70(12)                    | 6049.72(8)                                                          |
| Ζ                                            | 2                                                   | 4                              | 4                                                                   |
| Radiation, $\lambda$ (Å)                     | Cu Ka, 1.54184                                      | Cu Ka, 1.54184                 | Cu Ka, 1.54184                                                      |
| $\rho_{calc} (g \ cm^{-3})$                  | 1.576                                               | 1.340                          | 1.543                                                               |
| $\mu$ (mm <sup>-1</sup> )                    | 6.275                                               | 6.445                          | 8.669                                                               |
| Reflections collected                        | 83484                                               | 79376                          | 63776                                                               |
| Independent reflections                      | 16981                                               | 12155                          | 12555                                                               |
| Parameters                                   | 1091                                                | 620                            | 611                                                                 |
| R(int)                                       | 0.0473                                              | 0.0359                         | 0.0317                                                              |
| R1/wR2, <sup>[a]</sup> I $\ge 2\sigma I$ (%) | 5.67/14.07                                          | 3.91/10.28                     | 2.43/5.89                                                           |
| R1/wR2, <sup>[a]</sup> all data (%)          | 6.33/14.79                                          | 4.08/10.49                     | 2.50/5.95                                                           |
| GOF                                          | 1.034                                               | 1.053                          | 1.023                                                               |

<sup>[a]</sup> R1 =  $[\Sigma ||F_o| - |F_c||] / \Sigma |F_o|$ ; wR2 = { $[\Sigma w[(F_o)^2 - (F_c)^2]^2 / [\Sigma w(F_o^2)^2]^{1/2}$ ; w =  $[\sigma^2(F_o)^2 + (AP)^2 + BP]^{-1}$ , where P =  $[(F_o)^2 + 2(F_c)^2] / 3$  and the A and B values are 0.0643 and 14.41 for [8][BAr<sup>F</sup><sub>4</sub>] · 4.5THF and 0.0569 and 8.14 [9]Br · 0.5THF and 0.0255 and 6.33 for [9][AlBr<sub>4</sub>].

# 2. NMR spectra



Figure S1. <sup>1</sup>H NMR spectrum of 1 in  $d_8$ -THF.



Figure S2. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 1 in  $d_8$ -THF.



**Figure S3.** <sup>1</sup>H NMR spectrum of **2** in  $d_8$ -THF.



Figure S4.  ${}^{13}C{}^{1}H$  NMR spectrum of 2 in  $d_8$ -THF.



Figure S5. <sup>1</sup>H NMR spectrum of [3][AlBr<sub>4</sub>] in  $CD_2Cl_2$ .



Figure S6.  ${}^{13}C{}^{1}H$  NMR spectrum of [3][AlBr<sub>4</sub>] in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S7. <sup>1</sup>H NMR spectrum of [4][AlBr<sub>4</sub>] in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S8.  ${}^{13}C{}^{1}H$  NMR spectrum of [4][AlBr<sub>4</sub>] in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S9. <sup>1</sup>H NMR spectrum of 5 in  $d_8$ -THF.



Figure S10. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 5 in  $d_8$ -THF.



**Figure S11.** <sup>1</sup>H NMR spectrum of **6** in  $d_8$ -THF.



Figure S12. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 6 in  $d_8$ -THF.



Figure S13. <sup>1</sup>H NMR spectrum of  $[7][BArF_4]$  in  $CD_2Cl_2$ .



Figure S14. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of [7][BAr<sup>F</sup><sub>4</sub>] in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S15. <sup>1</sup>H NMR spectrum of [8][BAr<sup>F</sup><sub>4</sub>] in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S16. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of [8][BAr<sup>F</sup><sub>4</sub>] in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S17. <sup>1</sup>H NMR spectrum of [9]Br in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S18. <sup>1</sup>H NMR spectrum of  $[9][BArF_4]$  in  $CD_2Cl_2$ .



Figure S19. <sup>1</sup>H NMR spectrum of [9][AlBr<sub>4</sub>] in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S20.  ${}^{13}C{}^{1}H$  NMR spectrum of [9]Br in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S21. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of [9][BAr<sup>F</sup><sub>4</sub>] in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S22. <sup>13</sup>C $\{^{1}H\}$  NMR spectrum of [9][AlBr<sub>4</sub>] in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S23. <sup>1</sup>H NMR spectrum of  $[10][BAr^{F_4}]_2$  in  $CD_2Cl_2$ .



Figure S24. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of  $[10][BArF_4]_2$  in  $CD_2Cl_2$ .

# 3. ESI-MS spectra



Figure S25. Mass envelope observed for 3 in the positive ion mode ESI-MS spectrum of [3][AlBr<sub>4</sub>].



Figure S26. Mass envelope observed for 4 in the positive ion mode ESI-MS spectrum of [4][AlBr<sub>4</sub>].



Figure S27. Mass envelope observed for 7 in the positive ion mode ESI-MS spectrum of  $[7][BAr^{F_4}]$ .



Figure S28. Mass envelope observed for 8 in the positive ion mode ESI-MS spectrum of  $[8][BAr^{F_4}]$ .



Figure S29. Mass envelope observed for 9 in the positive ion mode ESI-MS spectrum of  $[9][BAr^{F_4}]$ .



Figure S30. Mass envelope observed for 10 in the positive ion mode ESI-MS spectrum of  $[10][BAr^{F_4}]_2$ .

#### 4. Computational details

DFT computations were performed using Gaussian 09, Revision D.01,<sup>[1]</sup> implementing the hybrid functional PBE1PBE. 6-31G(d,p) basis sets were used for all atoms except Br, Sb and Bi for which the fully relativistic energy-consistent pseudopotentials (ECPs)<sup>[2]</sup> were employed (ECP28MDF for Br, ECP46MDF for Sb and ECP78MDF for Bi), along with the corresponding basis set.<sup>[3]</sup> Stationary points were confirmed to be minima by the absence of imaginary frequencies.

| Compound                                                    | Total Energy ( <i>E</i> <sub>h</sub> ) |  |  |
|-------------------------------------------------------------|----------------------------------------|--|--|
| $(IPr)SbBr_3(1)$                                            | -1204.40114744                         |  |  |
| $(IPr)BiBr_3(2)$                                            | -1204.44905838                         |  |  |
| [(IPr)BiBr <sub>3</sub> ] <sub>2</sub>                      | -2408.91938598                         |  |  |
| [(IPr)BiBr <sub>3</sub> ] <sub>2</sub> (planar)             | -2408.91895308                         |  |  |
| $(aIPr)SbBr_3(5)$                                           | -1204.40490314                         |  |  |
| [(aIPr)SbBr <sub>3</sub> ] <sub>2</sub>                     | -2408.84075052                         |  |  |
| (aIPr)BiBr <sub>3</sub> (6)                                 | -1204.44859133                         |  |  |
| [(aIPr)BiBr <sub>3</sub> ] <sub>2</sub>                     | -2408.93166563                         |  |  |
| $[(aIPr \cdot 2THF)SbBr_2]^+ (7 \cdot 2THF)$                | -1655.19966022                         |  |  |
| [(aIPr·2THF)BiBr <sub>2</sub> ] <sup>+</sup> (8·2THF)       | -1655.24512671                         |  |  |
| THF                                                         | -232.18530508                          |  |  |
| $[(aIPr)_2SbBr_2]^+$ (9)                                    | -2349.56172240                         |  |  |
| [(aIPr) <sub>2</sub> SbBr <sub>2</sub> ]Br ([ <b>9</b> ]Br) | -2363.13213460                         |  |  |
| $[(aIPr)_2BiBr_2]^+$                                        | -2349.58662421                         |  |  |
| [(aIPr) <sub>2</sub> BiBr <sub>2</sub> ]Br                  | -2363.15616954                         |  |  |
| Br <sup>_</sup>                                             | -13.46013171                           |  |  |
| IPr                                                         | -1158.68915469                         |  |  |
| $[(aIPr)_2SbBr]^{2+}$ (10)                                  | -2335.86557689                         |  |  |

#### References

- [1] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Comperts, R.; Mennucci, B.; Hratchian, H. P.; Oritz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 09, Revision D.01*, **2009**.
- [2] Stoll, H.; Metz, B.; Dolg, M. J. Comput. Chem. 2002, 23 (8), 767–778.
- [3] Burkatzki, M.; Filippi, C.; Dolg, M. J. Chem. Phys. 2007, 126 (23), 234105.