Single-Ion Magnetism in Seven-Coordinate Yb^{III} Complexes with

Distorted *D*_{5h} Coordination Geometry

Dong-Qing Wu,^{a,c} Dong Shao,^a Xiao-Qin Wei,^a Fu-Xing Shen,^a Le Shi,^a Yi-Quan Zhang,^{*b} Xin-Yi Wang^{*a}

^a State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China. E-mail: <u>wangxy66@nju.edu.cn</u>

^b Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, China

^c School of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China

Supporting Information

Table of contents

Fig. S1 TGA curve for compound 1.	S3
Fig. S2 TGA curve for compound 2.	S3
Fig. S3 Experimental and calculated PXRD patterns for compound 1.	S4
Fig. S4 Experimental and calculated PXRD patterns for compound 2.	S4
Fig.S5 Crystal packing of complex 1. The dashed lines show the nearest intermolecular Yb	Yb
separation. Hydrogen atoms and the solvents are omitted for clarity.	S5
Fig.S6 Crystal packing of complex 2. The dashed lines show the nearest YbYb distances. T	The
pink parts represent the lattice H4bmshp molecules. Hydrogen atoms are omitted for clarity	S5
Fig.S7 The field-dependent magnetization plots at indicated temperatures for 1(left) and 2(right	ht).
The solid lines represent the <i>ab initio</i> calculation results. Inset: the reduced magnetization plots.	S6
Fig. S8 Cole–Cole plots of χ'' vs. χ' of 1 at 2.0 K under various applied dc fields. The solid lin	nes
represent the best fit of the experimental results with the generalized Debye model	S6
Fig. S9 Cole–Cole plots of χ'' vs. χ' of 2 at 2.0 K under various applied dc fields. The solid lin	nes
represent the best fit of the experimental results with the generalized Debye model	S7
Fig. S11 Variable-temperature ac susceptibility data for 1 collected under a 1500 Oe dc field or	ver
the frequency range of 1 to 950 Hz. The solid lines are simply guides for the eye	S8
Fig. S12 Variable-temperature ac susceptibility data for 2 collected under a 600 Oe dc field over	the
frequency range of 1 to 950 Hz. The solid lines are simply guides for the eye	S9
Table S1. Selected bond lengths (Å) and bond angles (°) for 1 and 2.	S9
Table S2. Detailed analysis results by Contiouous Shape Measures(CShM)	510
Table S3. Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots	of
compounds 1 and 2 at 2 K under various dc fields according to the generalized Debye modelS	511
Table S4. Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of 1 a	ınd
2 under 1.8 K-5 K according to the generalized Debye model.	11
Table S5. Parameters fitted from the Arrhenius plots in Fig.6 considering multiple relaxation	ion
processesS	12
Table S6. Calculated energies and wave functions with definite projection of the total moment JM	/[>
for the lowest four Kramers doublets (KDs) of Yb ^{III} fragments in compounds 1-2S	13
Table S7 . Calculated energy levels (cm ⁻¹), $g(g_x, g_y, g_z)$ tensors and m_J values of the lowest Kram	ers
doublets (KDs) of the Yb ^{III} fragments of compounds 1–2.	13
Table S8. Ab initio calculated crystal-field parameters for the investigated compounds 1–2. ^a S	514

Fig. S1 TGA curve for compound 1.

Fig. S2 TGA curve for compound 2.

Fig. S3 Experimental and calculated PXRD patterns for compound 1.

Fig. S4 Experimental and calculated PXRD patterns for compound 2.

Fig.S5 Crystal packing of complex **1**. The dashed lines show the nearest intermolecular Yb…Yb separation. Hydrogen atoms and the solvents are omitted for clarity.

Fig.S6 Crystal packing of complex **2**. The dashed lines show the nearest Yb…Yb distances. The pink parts represent the lattice H₄bmshp molecules. Hydrogen atoms are omitted for clarity.

Fig.S7 The field-dependent magnetization plots at indicated temperatures for **1**(left) and **2**(right). The solid lines represent the *ab initio* calculation results. Inset: the reduced magnetization plots.

Fig. S8 Cole–Cole plots of χ'' vs. χ' of **1** at 2.0 K under various applied dc fields. The solid lines represent the best fit of the experimental results with the generalized Debye model.

Fig. S9 Cole–Cole plots of χ'' vs. χ' of **2** at 2.0 K under various applied dc fields. The solid lines represent the best fit of the experimental results with the generalized Debye model.

Fig.S10 (a) Frequency dependence of the out-of-phase (χ'') magnetic susceptibility of 2 (1–1000 Hz) measured at 2.0 K in various applied fields from 0 to 4500 Oe. (b) Field dependence of the magnetic relaxation time at 2.0 K for **2**.

Fig. S11 Variable-temperature ac susceptibility data for **1** collected under a 1500 Oe dc field over the frequency range of 1 to 950 Hz. The solid lines are simply guides for the eye.

Fig. S12 Variable-temperature ac susceptibility data for **2** collected under a 600 Oe dc field over the frequency range of 1 to 950 Hz. The solid lines are simply guides for the eye.

Compound 1: [Yb(H ₃ Bmshp)(DMF) ₂ Cl ₂]·DMF·1.5H ₂ O					
		Bond distanc	es [Å]		
Yb(1)-O(4)	2.127(2)	Yb(1)-O(1)	2.345(2)	Yb(1)-Cl(1)	2.6662(9)
Yb(1)-O(3)	2.251(3)	Yb(1)-N(3)	2.484(3)		
Yb(1)-O(2)	2.312(2)	Yb(1)-Cl(2)	2.5781(9)		
Bond angles					
O(4)-Yb(1)-O(3)	147.84(10)	O(3)-Yb(1)-N(3)	139.37(9)	N(3)-Yb(1)-Cl(2)	84.77(7)
O(4)-Yb(1)-O(2)	76.94(9)	O(2)-Yb(1)-N(3)	148.64(9)	O(4)-Yb(1)-Cl(1)	87.78(8)
O(3)-Yb(1)-O(2)	71.97(10)	O(1)-Yb(1)-N(3)	65.32(8)	O(3)-Yb(1)-Cl(1)	90.04(9)

Table S1. Selected bond lengths (Å) and bond angles ([°]) for 1 and 2.

O(4)-Yb(1)-O(1)	137.46(9)	O(4)-Yb(1)-Cl(2)	96.66(8)	O(2)-Yb(1)-Cl(1)	100.68(8)
O(3)-Yb(1)-O(1)	74.28(10)	O(3)-Yb(1)-Cl(2)	93.37(9)	O(1)-Yb(1)-Cl(1)	86.25(7)
O(2)-Yb(1)-O(1)	145.48(9)	O(2)-Yb(1)-Cl(2)	93.73(8)	N(3)-Yb(1)-Cl(1)	83.51(6)
O(4)-Yb(1)-N(3)	72.16(9)	O(1)-Yb(1)-Cl(2)	81.17(7)	Cl(2)-Yb(1)-Cl(1)	165.54(3)
	Comp	ound 2: [Yb(H ₃ Bms	shp)(DMF)2Cl2]·H4Bmshp	
		Bond distar	ices [Å]		
Yb(1)-O(4)	2.125(4)	Yb(1)-O(1)	2.354(4)	Yb(1)-Cl(2)	2.6250(15)
Yb(1)-O(2)	2.280(4)	Yb(1)-N(3)	2.454(4)		
Yb(1)-O(3)	2.306(4)	Yb(1)-Cl(1)	2.6088(16)		
		Bond a	ngles		
O(4)-Yb(1)-O(2)	79.00(16)	O(2)-Yb(1)-N(3)	148.93(15)	N(3)-Yb(1)-Cl(1)	88.67(11)
O(4)-Yb(1)-O(3)	147.85(18)	O(3)-Yb(1)-N(3)	138.52(16)	O(4)-Yb(1)-Cl(2)	99.39(13)
O(2)-Yb(1)-O(3)	72.53(17)	O(1)-Yb(1)-N(3)	65.76(13)	O(2)-Yb(1)-Cl(2)	86.84(13)
O(4)-Yb(1)-O(1)	137.04(14)	O(4)-Yb(1)-Cl(1)	88.88(13)	O(3)-Yb(1)-Cl(2)	93.71(14)
O(2)-Yb(1)-O(1)	143.06(15)	O(2)-Yb(1)-Cl(1)	99.78(13)	O(1)-Yb(1)-Cl(2)	80.08(11)
O(3)-Yb(1)-O(1)	74.03(16)	O(3)-Yb(1)-Cl(1)	81.68(14)	N(3)-Yb(1)-Cl(2)	89.22(11)
O(4)-Yb(1)-N(3)	71.28(14)	O(1)-Yb(1)-Cl(1)	90.43(11)	Cl(1)-Yb(1)-Cl(2)	170.31(5)

 Table S2. Detailed analysis results by Contiouous Shape Measures(CShM)

Shape	Heptagon	Hexagonal	Pentagonal	Capped	Capped	Johnson	Elongated
		pyramid	bipyramid	octahedron	trigonal	pentagonal	triangular
					prism	bipyramid	pyramid
Yb of	33.346	25.560	0.865	6.564	5.278	6.551	23.555
1							
Yb of	34.337	24.593	1.094	6.218	4.954	6.874	21.871
2							

 Table S3. Relaxation fitting parameters from the least-square fitting of the Cole-Cole

 plots of compounds 1 and 2 at 2 K under various dc fields according to the

 generalized Debye model.

Compound 1				
<i>H</i> / Oe	$\chi_S / cm^3 mol^{-1}K$	$\chi_T / cm^3 mol^{-1}K$	τ/s	α
500	0.16075	0.72103	0.00103	0.22765
1000	0.04555	0.70991	0.00112	0.23788
1500	0.02446	0.68968	0.00119	0.22833
2000	0.02579	0.66764	0.00115	0.21957
3000	0.00592	0.60565	0.00108	0.22888
3500	0.00345	0.5604	0.00105	0.24507
4000	0.00102	0.54333	0.00094	0.25192
4500	0.00227	0.49233	0.00066	0.25574
		Compound 2		
<i>H</i> / Oe	$\chi_S / cm^3 mol^{-1}K$	$\chi_T / cm^3 mol^{-1}K$	τ/s	α
400	0.24215	0.80742	0.02439	0.11718
600	0.14528	0.8203	0.02497	0.13837
800	0.08709	0.82194	0.02385	0.16897
1000	0.05914	0.78549	0.02296	0.13878
1200	0.0487	0.79075	0.02127	0.11788
1500	0.02967	0.75835	0.01709	0.14885
2000	0.02145	0.70516	0.00854	0.13375
2500	0.00277	0.64041	0.00426	0.13417
3000	0.00121	0.65023	0.00265	0.20213

Table S4. Relaxation fitting parameters from the least-square fitting of the Cole-Coleplots of 1 and 2 under 1.8 K-5 K according to the generalized Debye model.

		Compound 1		
Temperature / K	$\chi_S / cm^3 mol^{-1}K$	$\chi_T/ cm^3 mol^{-1}K$	τ/s	α
1.8	0.07115	0.80117	0.00132	0.17814
1.9	0.05357	0.7649	0.00123	0.20234
2	0.06193	0.72939	0.00114	0.2003
2.2	0.04304	0.66223	9.4E-4	0.1871
2.4	0.0656	0.60944	8.5E-4	0.14824
2.6	0.06234	0.55823	7.4E-4	0.16812
2.8	0.08996	0.51914	6.5E-4	0.10336
3	0.06051	0.4912	5.7E-4	0.16777
3.2	0.08558	0.45478	5E-4	0.08829

3.4	0.06006	0.43615	4.3E-4	0.15456
3.6	0.07848	0.40631	4E-4	0.10911
3.8	0.06659	0.39241	3.5E-4	0.14464
4	0.07597	0.36937	3.1E-4	0.13485
4.2	0.09799	0.34947	2.9E-4	0.03006
4.4	0.07058	0.33536	2.3E-4	0.10388
4.6	0.07939	0.31887	2.1E-4	0.06729
4.8	0.08142	0.31102	1.9E-4	0.1105
5	0.09349	0.29674	1.9E-4	0.04682
		Compound 2		
Temperature / K	$\chi_S / cm^3 mol^{-1}K$	$\chi_T/ cm^3 mol^{-1}K$	τ / s	α
1.8	0.06457	0.91371	0.03628	0.16728
2	0.05695	0.8152	0.02489	0.16816
2.2	0.04807	0.73223	0.0174	0.14201
2.4	0.05423	0.68507	0.01271	0.12498
2.6	0.04306	0.60895	0.00787	0.09563
2.8	0.04251	0.56552	0.00553	0.0889
3	0.03147	0.57441	0.00389	0.08944
3.2	0.02967	0.4906	0.00238	0.07199
3.4	0.02796	0.46026	0.00163	0.05293
3.8	0.00642	0.42769	8.1E-4	0.07681
4	0.00399	0.39634	5.4E-4	0.05556
4.2	0.00783	0.38507	3.9E-4	0.07149
4.4	0.02674	0.36457	2.8E-4	0.06106
4.6	0.00258	0.35551	2.3E-4	0.03
4.8	0.03749	0.34806	2E-4	0.06068
5	0.01596	0.33323	1.4E-4	0.05419

Table S5. Parameters fitted from the Arrhenius plots in Fig.6 considering multiple

relaxation processes

Compound 1				
	Value	Standard error	\mathbb{R}^2	
А	368.14	12.93		
С	12.24	2.92	0.99	
n	3.62	0.15		
	Comp	ound 2		
	Value	Standard error	\mathbb{R}^2	
А	10.22	0.95		
С	0.38	0		
n	5.60	0.12	0.99	
τ_0	5.77E-7	0		
$U_{ m eff}$	30.43	0.75		

Table S6. Calculated energies and wave functions with definite projection of the totalmoment |JM > for the lowest four Kramers doublets (KDs) of Yb^{III} fragments in

	<i>E</i> /cm ⁻¹	wave functions
	0.0	99% ±1/2>
1	197.7	84 ±3/2>+13% ±5/2
1	421.1	19% ±7/2>+69% ±5/2>+12% ±3/2>
	543.5	77% ±7/2>+18% ±5/2>
	0.0	62% ±7/2>+30% ±3/2>+5% ±1/2>
2	187.0	9%)±7/2>+60%)±5/2>+5%)±3/2>+26%)±1/2>
2	381.0	15% ±7/2>+27% ±5/2>+21% ±3/2>+37% ±1/2>
	457.7	15%j=7/2>+9%j=5/2>+44%j=3/2>+32%j=1/2>

compounds 1-2.

Table S7. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and m_J values of the lowest Kramers doublets (KDs) of the Yb^{III} fragments of compounds 1–2.

VD	1(Yb_1)				3(Yb_2)	
KDs	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J
		4.875			0.888	
1	0.0	4.120	$\pm 1/2$	0.0	2.854	$\pm 7/2$
		1.095			5.727	
		1.785			0.841	
2	197.7	1.920	$\pm 3/2$	187.0	2.211	$\pm 5/2$
		3.664			4.061	
		1.102			0.994	
3	421.1	2.896	$\pm 5/2$	381.0	2.969	$\pm 1/2$
		5.003			5.144	
		0.687			0.876	
4	543.5	0.969	$\pm 7/2$	457.7	1.244	$\pm 3/2$
		7.479			7.016	

Table S8. Ab initio calculated crystal-field parameters for the investigated compounds

1–2.*^{<i>a*}

		B (<i>k</i> , <i>q</i>)		
k	q	1	2	
2	-2	0.1790×10^{1}	0.3899×10^{1}	
2	-1	0.7419×10^{1}	-0.4266×10^{-1}	
2	0	0.12741×10^{2}	-0.5277×10^{1}	
2	1	-0.67245×10^{1}	-0.1602×10^{1}	
2	2	0.3841	0.1473×10^{2}	
4	-4	-0.1081	0.8364×10^{-1}	
4	-3	0.1141	0.5015×10^{-2}	
4	-2	0.9297×10^{-1}	-0.5019×10^{-1}	
4	-1	0.1016	0.5316	
4	0	-0.1358	$-0.1025 \times \!\! 10^{-1}$	
4	1	-0.1597	0.4306×10^{-1}	
4	2	0.2501	0.7658	
4	3	0.2451	-0.1044	
4	4	-0.6925	-0.2964	
6	-6	0.9408×10^{-4}	-0.4436×10^{-2}	
6	-5	0.5269×10^{-2}	$-0.8132\!\times\!\!10^{-1}$	
6	-4	0.3820×10^{-2}	0.4574×10^{-3}	
6	-3	0.2182×10^{-2}	0.8781×10^{-2}	
6	-2	-0.1640×10^{-3}	0.1736×10^{-3}	
6	-1	-0.6440×10^{-2}	$-0.6961 \times \!\! 10^{-2}$	
6	0	0.3147×10^{-2}	$-0.1206\!\times\!\!10^{-2}$	
6	1	0.5682×10^{-4}	0.2771×10^{-2}	
6	2	0.1168×10^{-1}	0.1167×10^{-1}	
6	3	0.7592×10^{-2}	0.4136×10^{-2}	
6	4	-0.9253×10^{-4}	$-0.6725\!\times\!\!10^{-2}$	
6	5	$-0.7073\!\times\!\!10^{-2}$	-0.6472×10^{-2}	
6	6	-0.6762×10^{-2}	0.2257×10^{-1}	

^{*a*}Only the ranks k = 2, 4, and 6 are shown; higher ranks are much smaller and are not shown here.