Iridium(III) Complexes with Five-Membered Heterocyclic Ligands for Combined Photodynamic Therapy and Photoactivated Chemotherapy

Na Wu, † Jian-Jun Cao,† Xiao-Wen Wu, Cai-Ping Tan,* Liang-Nian Ji and Zong-Wan Mao*

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry,

Sun Yat-Sen University, Guangzhou 510275 (P. R. China), E-mail:

cesmzw@mail.sysu.edu.cn; tancaip@mail.sysu.edu.cn

Electronic Supporting Information

Table of Contents

Figure S1.	re S1. ¹ H NMR spectrum of Ir1.						
Figure S2.	Figure S2. ¹ H NMR spectrum of Ir2.						
Figure S3. ¹ H NMR spectrum of Ir3.							S3
Figure S4. ¹³ C NMR spectrum of Ir1.							
Figure S5.	¹³ C NM	R spectrum	of Ir2	•••••		•••••	S4
Figure S6.	¹³ C NM	R spectrum	of Ir3				S4
Figure S7. UV/Vis spectra and emission spectra of complexes Ir1–Ir3						S5	
Figure S8. Fluorescence spectra of Ir1–Ir3 upon irradiation with light						S6	
Table	S1 .	Crystal	data	and	structure	refinement	for
Ir3							
Table S2. Selected bond lengths (Å) and bond angles (deg) of Ir3							S 8

 Table S3. Photophysical data of complexes Ir1-Ir3 in degassed medium
 S8

Figure S1 ¹H NMR spectrum of complex Ir1.

Figure S2 ¹H NMR spectrum of complex Ir2.

Figure S3 ¹H NMR spectrum of complex Ir3.

Figure S4 ¹³C NMR spectrum of complex Ir1.

Figure S6 ¹³C NMR spectrum of complex Ir3.

Figure S7 A) UV/Vis spectra of Ir1–Ir3 (3×10^{-5} M) measured in a) CH₃CN and b) PBS at 25 °C. B) Emission spectra of Ir1–Ir3 (3×10^{-5} M) measured in a) CH₃CN and b) PBS at 25 °C.

Figure S8 Fluorescence spectra of **Ir1–Ir3** (30 μ M) upon irradiation with blue light ($\lambda_{irr} = 425 \text{ nm}, 36 \text{ J cm}^{-2}$). The control samples were kept in dark. A) **Ir1**, B) **Ir2**, C) **Ir3**.

Compound	$Ir3 \bullet CH_2Cl_2$		
CDCC no.	1559195		
Empirical formula	$C_{28} H_{24} Ir N_6 I+, C F_3 O_3 S I-, C H_2 Cl_2$		
Formula weight	870.73		
Temperature	153(2) K		
Wavelength	1.54178 Å		
Crystal system	Orthorhombic		
Space group	Cmca (Cmce)		
	$a = 24.0303(3) \text{ Å} \Box \alpha = 90^{\circ}.$		
Unit cell dimensions	$b = 15.9300(2) \text{ Å} \qquad \beta = 90^{\circ}$		
	$c = 17.5507(3) \text{ Å} \qquad \Box \gamma = 90^{\circ}$		
Volume	6718.45(17) Å ³		
Z	8		
Density (calculated)	1.722 Mg/m ³		
Absorption coefficient	10.241 mm ⁻¹		
F(000)	3408.0		
Crystal size	0.220 x 0.190 x 0.180 mm ³		
Theta range for data collection	3.679 to 64.932°		
Index ranges	-27<=h<=28, -18<=k<=18, -20<=l<=18		
Reflections collected	29569		
Independent reflections	2932 [R(int) = 0.1485]		
Completeness to theta = 64.932°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.00000 and 0.04983		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2932 / 63 / 190		
Final R indices [I>2sigma(I)] ^a	R1 = 0.0780, wR2 = 0.2275		
Goodness-of-fit on F^{2b}	1.074		
R indices (all data)	R1 = 0.0837, wR2 = 0.2401		
Extinction coefficient	n/a		
Largest diff neak and hale	6.744 and $6.116 a^{3}$		

Table S1 Crystal data and structure refinement for $Ir3 \cdot CH_2Cl_2$

$${}^{a}R1 = \sum \left\|F_{0}\right| - \left|F_{c}\right| / \sum \left|F_{0}\right|, wR2 = \left\{\sum \left[w\left(F_{0}^{2} - F_{c}^{2}\right)^{2}\right] / \sum \left[w\left(F_{0}^{2}\right)^{2}\right]\right\}^{2} {}^{b}GOF = \left\{\sum \left[w\left(F_{0}^{2} - F_{c}^{2}\right)^{2} / (n-p)\right]\right\}^{2}$$

where n is the number of data and p is the number of parameters refined.

Compound	Ir3			
	Ir1–C1	2.008(8)		
bond lengths (Å)	Ir1–N1	2.056(7)		
	Ir1–N2	2.162(6)		
	C1–Ir1–C1	87.4(4)		
bond angles (deg)	C1–Ir1–N1	80.1(3)		
	C1–Ir1–N1	96.7(3)		
	N1–Ir1–N1	175.7(3)		
	C1–Ir1–N2	91.6(3)		
	C1–Ir1–N2	177.0(3)		

Table S2 Selected bond lengths (Å) and bond angles (deg) of Ir3

Table S3 Photophysical data of complexes Ir1, Ir2 and Ir3 in degassed medium^[a]

Complex	Medium	$\lambda_{abs, max}(nm)$	$\lambda_{em, max}(nm)$	$\Phi_{em}^{[b]}$	$\tau_{av}^{[c]}(ns)$
	CH_2Cl_2	388	517	0.032	103.7
Ir1	CH ₃ CN	385	518	0.031	42.1
	PBS	379	514	0.051	476.6
Ir2	CH_2Cl_2	388	518	0.026	92.4
	CH ₃ CN	385	518	0.032	40.2
	PBS	376	511	0.050	488.4
	CH_2Cl_2	389	518	0.032	88.3
Ir3	CH ₃ CN	387	517	0.042	40.7
	PBS	382	514	0.065	454.5

[a] All emission decays were obtained on freshly prepared samples placed in quartz cuvettes. Samples were 3×10^{-5} M in concentration. [b] Solutions of $[\text{Ru}(\text{bpy})_3](\text{PF}_6)_2$ were used as the standard, PBS ($\Phi_{em} = 0.042$), CH₃CN ($\Phi_{em} = 0.062$) and CH₂Cl₂ ($\Phi_{em} = 0.059$).^[1] [c] Decay curves of compounds were recorded by an Edinburgh FLS 920 Spectrometer. All curves were fitted into a two exponential formula $F(t) = A + B_1 \exp(-t/\tau_1) + B_2 \exp(-t/\tau_2) + B_3 \exp(-t/\tau_3)$;

$$\tau_{ay} = \frac{B_1 \tau_1^2 + B_2 \tau_2^2 + B_3 \tau_3^2}{B_1 \tau_1 + B_2 \tau_2 + B_3 \tau_3}$$

References

[1] K. Nakamaru, Bull. Chem. Soc. Jpn. 1982, 55, 2697-2705.