Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supporting Information

for

Tantallacyclopentadiene as a Unique Metal-containing Diene Ligand Coordinated to Nickel for Preparing Tantalum—Nickel Heterobimetallic Complexes

Payel Laskar, Keishi Yamamoto, Anga Srinivas, Alexis Mifleur, Haruki Nagae,

Hayato Tsurugi,* and Kazushi Mashima*

Department of Chemistry, Graduate School of Engineering Science, Osaka University,

Toyonaka, Osaka 560-8531, Japan

Contents:

- 1. NMR spectra of TaCl₃(C₄H₂^tBu₂)Ni(COD) (4).
- 2. NMR spectra of TaCl₃(C₄H₂^tBu₂)Ni(PMe₂Ph)₂ (5).
- 3. NMR spectra of TaCl₃(C₄H₂^tBu₂)Ni(DPPE) (6a).
- 4. NMR spectra of TaCl₃(C₄H₂^tBu₂)Ni(DEPE) (6b).
- 5. NMR spectra of TaCl₃(C₄H₂^tBu₂)Ni(IPr) (7).
- 6. Crystal data and data collection parameters of complexes 4, 6a and 7.
- 7. Single-point DFT Calculation (B3LYP/LANL2DZ, 6-311G(d)) for IPr-coordinated Ta-Ni complex 7.

1. NMR spectra of TaCl₃(C₄H₂^tBu₂)Ni(COD) (4).

Figure S1. ¹H NMR spectrum of 4 in CD₂Cl₂ at 30 °C.

Figure S2. ¹³C NMR spectrum of 4 in CD₂Cl₂ at 30 °C.

2. NMR spectra of TaCl₃(C₄H₂^tBu₂)Ni(PMe₂Ph)₂ (5).

Figure S3. ¹H NMR spectrum of **5** in C_6D_6 at 30 °C.

Figure S4. ¹³C NMR spectrum of **5** in THF- d_8 at 30 °C.

Figure S5. ³¹P NMR Spectrum of **5** in THF- d_8 at 30 °C.

3. NMR spectra of TaCl₃(C₄H₂^tBu₂)Ni(DPPE) (6a).

Figure S6. ¹H NMR Spectrum of 6a in THF-*d*₈ at 30 °C.

Figure S7. ¹³C NMR Spectrum of **6a** in THF- d_8 at 30 °C.

Figure S8. ³¹P NMR Spectrum of **6a** in THF- d_8 at 30 °C.

4. NMR spectra of TaCl₃(C₄H₂^tBu₂)Ni(DEPE) (6b).

Figure S9. ¹H NMR Spectrum of **6b** in THF- d_8 at 30 °C.

Figure S10. ¹³C NMR Spectrum of **6b** in THF- d_8 at 30 °C.

Figure S11. ³¹P NMR Spectrum of **6b** in THF- d_8 at 30 °C.

5. NMR spectrum of TaCl₃(C₄H₂^tBu₂)Ni(IPr) (7).

Figure S12. ¹H NMR Spectrum of 7 in C_6D_6 at 30 °C.

Figure S13. ¹³C NMR Spectrum of **7** in C_6D_6 at 30 °C.

6. Crystal data and data collection parameters.

	4	6a
empirical formula	C20H32Cl3NiTa	2(C ₃₈ H ₄₄ Cl ₃ NiP ₂ Ta),
		$1.5(C_6H_6)$
formula Weight	618.48	1934.61
crystal system	monoclinic	triclinic
space group	<i>P</i> 2 ₁ / <i>n</i> (No. 14)	<i>P</i> 1 (No. 2)
<i>a</i> , Å	9.680(3)	13.970(12)
b, Å	16.427(5)	15.590(14)
<i>c</i> , Å	14.080(5)	19.400(17)
α , deg.	-	93.510(18)
β , deg.	104.420(3)	91.040(12)
γ, deg.	-	95.950(17)
$V, Å^3$	2168.3(12)	4193(6)
Ζ	4	2
$D_{\text{calcd}}, \text{g/cm}^{-3}$	1.894	1.532
μ [Mo- $K\alpha$], mm ⁻¹	6.275	3.348
<i>Т</i> , К	113(2)	113(2)
crystal size, mm	$0.31 \times 0.25 \times 0.23$	$0.34 \times 0.18 \times 0.15$
θ range for data collection (deg.)	3.18 to 27.46	3.02 to 27.42
no. of reflections measured	19778	36920
unique data (R_{int})	0.0437	0.0502
data / restraints / parameters	4750 / 0 / 226	16664 / 0 / 892
$R1 (I > 2.0\sigma(I))$	0.0430	0.0491
$wR2 (I > 2.0\sigma(I))$	0.1063	0.1082
R1(all data)	0.0455	0.0638
wR2 (all data)	0.1085	0.1217
GOF on F^2	1.114	1.097
Δρ, e Å ⁻³	3.25, -1.74	1.89, -1.86

 Table S1. Crystal data and data collection parameters of 4, 6a, and 7.

a) $R1 = (\Sigma ||Fo| - |Fc||)/(\Sigma |Fo|)$ b) $wR2 = [\{\Sigma w (Fo^2 - Fc^2)^2\}/\{\Sigma w (Fo^4)\}]^{1/2}$

	7
empirical formula	C ₃₉ H ₅₆ Cl ₃ N ₂ NiTa, 1.5(C ₆ H ₆)
formula Weight	1016.01
crystal system	monoclinic
space group	<i>C</i> 2/ <i>c</i> (No. 15)
<i>a</i> , Å	44.286(13)
b, Å	11.294(3)
<i>c</i> , Å	19.288(5)
α , deg.	-
β , deg.	105.361(4)
γ, deg.	-
$V, Å^3$	9302(4)
Ζ	8
D_{calcd} , g/cm ⁻³	1.431
μ [Mo- $K\alpha$], mm ⁻¹	2.957
<i>Т</i> , К	113(2)
crystal size, mm	$0.31\times0.13\times0.13$
θ range for data collection (deg.)	3.11 to 27.47
no. of reflections measured	42870
unique data (R_{int})	0.0429
data / restraints / parameters	10175 / 0 / 496
$R1 (I > 2.0\sigma(I))$	0.0423
$wR2 \ (I > 2.0\sigma(I))$	0.0941
R1(all data)	0.0458
wR2 (all data)	0.0969
GOF on F^2	1.156
Δρ, e Å ⁻³	2.87, -1.35

Table S2. (continued)

a) $R1 = (\Sigma ||Fo| - |Fc||)/(\Sigma |Fo|)$ b) $wR2 = [\{\Sigma w (Fo^2 - Fc^2)^2\}/\{\Sigma w (Fo^4)\}]^{1/2}$

7. Single-point DFT Calculation (B3LYP/LANL2DZ, 6-311G(d)) for IPr-coordinated Ta-Ni complex 7.

Figure S14. Molecular Orbital for HOMO-1 of complex 7.

Table S3. Cartesian coordinates for the structural calculation of complex 7.

Center	Atomic	Atomic	Coord	linates (Ang	gstroms)	
Number	Number	Туре	Х	Y	Z	
1	73	0	2.737869	-0.085703	-0.149792	
2	28	0	0.157498	-0.004730	-0.039269	
3	17	0	4.451535	-1.374406	0.863249	
4	17	0	4.435363	1.186125	-1.220977	
5	17	0	1.253241	1.591222	-1.240004	
6	7	0	-2.719348	-0.659052	0.620528	
7	7	0	-2.476224	1.379840	-0.022455	
8	6	0	1.530144	-1.564753	-0.890824	

9	6	0	0.872128	-1.914180	0.300785
10	6	0	0.953911	-1.083453	1.495828
11	6	0	1.646596	0.143190	1.560154
12	6	0	1.450015	-2.308083	-2.219107
13	6	0	2.813990	-2.183307	-2.914426
14	6	0	1.113233	-3.790613	-2.011243
15	6	0	0.386643	-1.626137	-3.090758
16	6	0	1.732065	1.011607	2.796380
17	6	0	0.350241	1.226120	3.432086
18	6	0	2.337640	2.356582	2.416277
19	6	0	2.646751	0.306366	3.813146
20	6	0	-1.770902	0.210010	0.130510
21	6	0	-3.949405	-0.024704	0.809042
22	6	0	-3.790118	1.242996	0.403996
23	6	0	-2.525228	-2.094485	0.730660
24	6	0	-2.160252	-2.650254	1.968411
25	6	0	-1.877090	-4.020784	1.991372
26	6	0	-2.009660	-4.794157	0.857353
27	6	0	-2.469871	-4.238133	-0.333075
28	6	0	-2.750441	-2.872303	-0.416626
29	6	0	-2.121950	-1.819765	3.239437
30	6	0	-1.184346	-2.387287	4.315348
31	6	0	-3.540415	-1.703851	3.848243
32	6	0	-3.338798	-2.290547	-1.696510
33	6	0	-2.982298	-3.070948	-2.965503
34	6	0	-4.877374	-2.206776	-1.592575
35	6	0	-1.955210	2.590128	-0.615991
36	6	0	-1.766858	3.719497	0.181946
37	6	0	-1.180302	4.837449	-0.429832
38	6	0	-0.856181	4.840367	-1.765995
39	6	0	-1.142541	3.736123	-2.545590
40	6	0	-1.703991	2.586107	-2.003111
41	6	0	-2.211085	3.805863	1.630326
42	6	0	-3.533735	4.593228	1.703791
43	6	0	-1.178413	4.481873	2.540659

44	6	0	-2.029296	1.384790	-2.886310
45	6	0	-1.304186	1.388760	-4.231169
46	6	0	-3.545850	1.284117	-3.113055
47	1	0	2.786176	-2.655778	-3.773054
48	1	0	3.017249	-1.237984	-3.067335
49	1	0	3.506961	-2.580008	-2.346125
50	1	0	1.068565	-4.239684	-2.881291
51	1	0	1.809579	-4.209257	-1.463066
52	1	0	0.248618	-3.868835	-1.557786
53	1	0	0.321017	-2.092962	-3.950362
54	1	0	-0.480091	-1.658902	-2.634729
55	1	0	0.640135	-0.692262	-3.244520
56	1	0	0.441603	1.791207	4.227712
57	1	0	-0.241343	1.664999	2.785841
58	1	0	-0.029321	0.360086	3.687709
59	1	0	2.396863	2.925249	3.212008
60	1	0	3.234937	2.217634	2.046533
61	1	0	1.771992	2.791631	1.744849
62	1	0	2.716188	0.852975	4.623844
63	1	0	2.268312	-0.568562	4.040588
64	1	0	3.537132	0.186000	3.422915
65	1	0	-4.743405	-0.415731	1.156635
66	1	0	-4.454769	1.921986	0.407874
67	1	0	-1.590193	-4.425952	2.801846
68	1	0	-1.782254	-5.716096	0.887603
69	1	0	-2.595038	-4.791686	-1.094335
70	1	0	-1.807422	-0.901298	3.003036
71	1	0	-1.205411	-1.807209	5.105101
72	1	0	-1.478174	-3.288140	4.563135
73	1	0	-0.270323	-2.426319	3.963517
74	1	0	-3.501709	-1.166520	4.666959
75	1	0	-4.138820	-1.273077	3.202480
76	1	0	-3.879530	-2.598749	4.060697
77	1	0	-2.987869	-1.360014	-1.799993
78	1	0	-3.395179	-2.638251	-3.741942

,	79	1	0	-2.008740	-3.083584	-3.078551
:	80	1	0	-3.314134	-3.989692	-2.888506
:	81	1	0	-5.239671	-1.831242	-2.422352
:	82	1	0	-5.243782	-3.104064	-1.452286
:	83	1	0	-5.122066	-1.630925	-0.838855
:	84	1	0	-1.005102	5.611943	0.091688
:	85	1	0	-0.436035	5.598894	-2.152162
:	86	1	0	-0.951237	3.763773	-3.475150
:	87	1	0	-2.373893	2.879260	1.967932
:	88	1	0	-3.827644	4.652736	2.637443
:	89	1	0	-3.398758	5.495369	1.346215
	90	1	0	-4.218996	4.131733	1.175694
	91	1	0	-1.520105	4.508570	3.458671
	92	1	0	-0.340864	3.973138	2.518648
	93	1	0	-1.013913	5.395366	2.226505
	94	1	0	-1.743155	0.562778	-2.393976
	95	1	0	-1.559956	0.592822	-4.742205
	96	1	0	-1.552843	2.193170	-4.733251
	97	1	0	-0.336282	1.383887	-4.080380
9	98	1	0	-3.740098	0.510120	-3.682064
	99	1	0	-3.998255	1.178519	-2.250925
1	00	1	0	-3.864610	2.100410	-3.552170
1	01	1	0	0.359650	-2.714658	0.328207
1	02	1	0	0.512897	-1.387510	2.280482