## **Supporting Information**

# A ruthenium water oxidation catalyst containing a bipyridine glycoluril ligand

Vishwanath Mane, Avinash Kumbhar<sup>\*</sup> and Randolph Thummel

| Table of content                                                                    | Page  |
|-------------------------------------------------------------------------------------|-------|
| Figure S1. <sup>1</sup> H NMR of complex 9a in DMSO-d <sub>6</sub>                  | 2     |
| Figure S2. <sup>13</sup> C-NMR of complex <b>9a</b> in DMSO-d <sub>6</sub>          | 2     |
| Figure S3. <sup>1</sup> H NMR of complex 9b in DMSO-d <sub>6</sub>                  | 3     |
| Figure S4. ESI-MS of complex 9a in Methanol                                         | 3-4   |
| Figure S5. ESI-MS of complex 9b in Methanol                                         | 4-5   |
| Figure S6.Uv-Visible spectra of complex 9a and complex 9b                           | 5     |
| Table S1.         MLCT and Ligand based transition of complex 9a and 9b             | 6     |
| Figure S7 Spectrophotometric titration of complex 9b with NaOH in B. R. Buffer      | 6     |
| Figure S8 The dependence of the absorbance of complex 9b at a) 370 nm and b) 486 nm | 7     |
| Table S2.         Crystallographic Collection and Refinement Data                   | 8     |
| Table S3. Selective bond distances [Å] of Complex 9c                                | 9     |
| Table S4. Selective bond angle [°] of Complex 9c                                    | 9-11  |
| Table S5. Selective bond distances [Å] of Complex 9d                                | 11-12 |
| Table S6.         Selective bond angle [°] of Complex 9d                            | 12-14 |
| Figure S9. Pourbiax diagram                                                         | 15    |
| Figure S10. Crystal Structure of 9c and 9d                                          | 15    |
| Figure S11. Comparative oxygen evolution of 9b and 1                                | 16    |



**Figure S2.**<sup>13</sup>C-NMR of complex **9a** in DMSO- $d_6$ 









Figure S4.ESI-MS of a) and b) complex 9a in methanol





Figure S5.ESI-MS of c) and d) complex9b in methanol



Figure S6.Uv-Visible spectra of a) complex 9a (20µM) and b) complex 9b (20µM) in water at 25 °C

| Complex | MLCT                                       | Ligand base | ed transition                       |
|---------|--------------------------------------------|-------------|-------------------------------------|
|         | nm (L mol <sup>-1</sup> cm <sup>-1</sup> ) | nm (L m     | ol <sup>-1</sup> cm <sup>-1</sup> ) |
| 9a      | 506 (10125)                                | 315 (35600) | 274 (20000)                         |

483 (8255)

Table S1. Photophysical properties of complex 9a and 9b

#### Determination of *p*K<sub>a</sub> value

9b

The acid/base spectrophotometric titration was performed in B. R. Buffer to determine the  $pK_a$  values of **9b** at room temperature. The pH value of the 0.1 mM **9b** buffer solution was adjusted by drop wise addition of concentrated NaOH solution. The  $pK_a$  values were obtained by plotting the absorbance versus pH profile at specific wavelength, fitted with equation (1). In which absorbance of the starting complex is  $A_o$  and  $A_\infty$  is the absorbance of the final product. From the average absorbance values  $A_o$  and  $A_\infty$  of the fitted curve, the  $pK_a$  value was determined as the corresponding pH value.<sup>1</sup>

$$A = A_{o} + K_{a} \left[ \frac{A_{\infty} - A_{o}}{K_{a} + 10 - pH} \right]$$
(1)

309 (31640)

270 (19260)



**Figure S7.** Absorption spectra of aqueous solutions of complex **9b** in B. R. buffer solution at a) pH 2-12 at 25 °C



Figure S8. The dependence of the absorbance of complex 9b at a) 370 nm and b) 486 nm on pH 2-12 at 25  $^\circ C$ 

| Parameters                        | Complex 9c                                      | Complex 9d                                         |
|-----------------------------------|-------------------------------------------------|----------------------------------------------------|
| Empirical formula                 | C29 H31 Cl2 N9 O7 Ru                            | C31 H27 F6 N9 O11 Ru S2                            |
| Formula weight                    | 789.60                                          | 980.80                                             |
| Temperature                       | 250(2) K                                        | 296(2) K                                           |
| Wavelength                        | 1.54178 Å                                       | 1.54178 Å                                          |
| Crystal system                    | Orthorhombic                                    | Orthorhombic                                       |
| Space group                       | Pbca                                            | P c a 21                                           |
| Unit cell dimensions              | $a = 14.1145(2)$ Å; $\alpha = 90^{\circ}$       | $a = 18.8901(8) \text{ Å};  \alpha = 90^{\circ}$   |
|                                   | $b = 16.1624(2) \text{ Å}; \beta = 90^{\circ}$  | $b = 8.5910(4) \text{ Å};  \beta = 90^{\circ}$     |
|                                   | $c = 28.6960(3) \text{ Å}; \gamma = 90^{\circ}$ | $c = 22.5655(10) \text{ Å}; \ \gamma = 90^{\circ}$ |
| Volume                            | 6546.25(14) Å <sup>3</sup>                      | 3662.0(3) Å <sup>3</sup>                           |
| Z                                 | 8                                               | 4                                                  |
| Density (calculated)              | 1.602 Mg/m <sup>3</sup>                         | 1.779 Mg/m <sup>3</sup>                            |
| Absorption                        | 5.902 mm <sup>-1</sup>                          | 5.476 mm <sup>-1</sup>                             |
| E(000)                            | 3216                                            | 1976                                               |
| Crystal size                      | $0.36 \times 0.28 \times 0.07 \text{ mm}^3$     | $0.204 \times 0.124 \times 0.072 \text{ mm}^3$     |
| Thota range for data              | 3 080 to 68 226°                                | 3 918 to 68 298°                                   |
| collection                        | 5.000 10 08.220 .                               | 5.910 10 00.298 .                                  |
| Index ranges                      | _9<=h<=16 _19<=k<=19 _                          | $-22 \le h \le 22$ $-10 \le k \le 9$ -             |
| index ranges                      | 33<=1<=34                                       | 27<=1<=27                                          |
| Reflections collected             | 21904                                           | 35302                                              |
| Independent                       | 5820 [R(int) = 0.2129]                          | 6538 [R(int) = 0.0578]                             |
| reflections                       |                                                 |                                                    |
| Completeness to                   | 97.7 %                                          | 99.6 %                                             |
| theta = 67.679°                   |                                                 |                                                    |
| Absorption                        | Semi-empirical from                             | Semi-empirical from                                |
| correction                        | equivalents                                     | equivalents                                        |
| Max. and min.                     | 0.662 and 0.172                                 | 0.674 and 0.465                                    |
| transmission                      |                                                 |                                                    |
| Refinement method                 | Full-matrix least-squares on                    | Full-matrix least-squares on                       |
|                                   | F <sup>2</sup>                                  | F <sup>2</sup>                                     |
| Data / restraints /               | 5820 / 0 / 442                                  | 6538 / 31 / 593                                    |
| parameters                        |                                                 |                                                    |
| Goodness-of-fit on F <sup>2</sup> | 1.207                                           | 1.017                                              |
| Final R indices                   | R1 = 0.1104, wR2 = 0.2809                       | R1 = 0.0333, wR2 = 0.0848                          |
| [I>2sigma(I)]                     |                                                 |                                                    |
| R indices (all data)              | R1 = 0.2675, WR2 = 0.3908                       | R1 = 0.0347, WR2 = 0.0860                          |
| Absolute Structure                | n/a                                             | 0.089(12)                                          |
| parameter                         |                                                 |                                                    |
| Extinction coefficient            | n/a                                             | n/a                                                |
| Largest diff. peak and            | 1.391 and -2.868 e.Å <sup>-3</sup>              | 0.616 and -0.713 e.Å <sup>-3</sup>                 |
| hole                              |                                                 |                                                    |

Table S2. Crystallographic collection and refinement Data

| Ru(1)-N(2)  | 1.970(10) |
|-------------|-----------|
| Ru(1)-N(5)  | 2.007(10) |
| Ru(1)-N(3)  | 2.044(10) |
| Ru(1)-N(1)  | 2.055(10) |
| Ru(1)-N(4)  | 2.092(9)  |
| Ru(1)-Cl(1) | 2.429(5)  |
| O(1)-C(28)  | 1.247(19) |
| O(2)-C(29)  | 1.241(19) |
| N(1)-C(1)   | 1.351(16) |
| N(1)-C(5)   | 1.371(17) |
| N(2)-C(10)  | 1.343(16) |
| N(2)-C(6)   | 1.368(16) |
| N(3)-C(15)  | 1.375(16) |
| N(3)-C(11)  | 1.382(16) |
| N(4)-C(16)  | 1.339(17) |
| N(4)-C(27)  | 1.352(17) |
| N(5)-C(17)  | 1.375(15) |
| N(5)-C(18)  | 1.381(16) |
| N(6)-C(28)  | 1.35(2)   |
| N(6)-C(23)  | 1.463(16) |
| N(6)-H(6)   | 0.8700    |
| N(7)-C(28)  | 1.337(18) |
| N(7)-C(22)  | 1.452(18) |
| N(7)-H(7A)  | 0.8700    |
| N(8)-C(29)  | 1.371(19) |
| N(8)-C(22)  | 1.453(17) |
| N(8)-H(8)   | 0.8700    |
| N(9)-C(29)  | 1.33(2)   |
| N(9)-C(23)  | 1.446(16) |
| N(9)-H(9A)  | 0.8700    |

### Table S3. Selective bond distances [Å] of Complex 9c

#### Table S4.Selective bond angle [°] of Complex 9c

| N(2)-Ru(1)-N(5) | 96.9(4) |
|-----------------|---------|
| N(2)-Ru(1)-N(3) | 78.6(4) |
| N(5)-Ru(1)-N(3) | 91.5(4) |

| N(2)-Ru(1)-N(1)  | 79.7(4)   |
|------------------|-----------|
| N(5)-Ru(1)-N(1)  | 90.3(4)   |
| N(3)-Ru(1)-N(1)  | 158.3(4)  |
| N(2)-Ru(1)-N(4)  | 174.9(5)  |
| N(5)-Ru(1)-N(4)  | 78.4(4)   |
| N(3)-Ru(1)-N(4)  | 103.4(4)  |
| N(1)-Ru(1)-N(4)  | 98.1(4)   |
| N(2)-Ru(1)-Cl(1) | 89.2(4)   |
| N(5)-Ru(1)-Cl(1) | 173.9(3)  |
| N(3)-Ru(1)-Cl(1) | 89.5(3)   |
| N(1)-Ru(1)-Cl(1) | 91.1(3)   |
| N(4)-Ru(1)-Cl(1) | 95.5(4)   |
| C(1)-N(1)-C(5)   | 115.4(13) |
| C(1)-N(1)-Ru(1)  | 129.7(10) |
| C(5)-N(1)-Ru(1)  | 114.9(9)  |
| C(10)-N(2)-C(6)  | 124.0(11) |
| C(10)-N(2)-Ru(1) | 118.7(9)  |
| C(6)-N(2)-Ru(1)  | 117.3(9)  |
| C(15)-N(3)-C(11) | 116.5(12) |
| C(15)-N(3)-Ru(1) | 128.8(9)  |
| C(11)-N(3)-Ru(1) | 114.8(9)  |
| C(16)-N(4)-C(27) | 119.6(12) |
| C(16)-N(4)-Ru(1) | 114.3(10) |
| C(27)-N(4)-Ru(1) | 126.0(10) |
| C(17)-N(5)-C(18) | 113.4(12) |
| C(17)-N(5)-Ru(1) | 117.5(10) |
| C(18)-N(5)-Ru(1) | 129.1(8)  |
| C(28)-N(6)-C(23) | 111.4(13) |
| C(28)-N(6)-H(6)  | 124.3     |
| C(23)-N(6)-H(6)  | 124.3     |
| C(28)-N(7)-C(22) | 112.1(15) |
| C(28)-N(7)-H(7A) | 124.0     |
| C(22)-N(7)-H(7A) | 124.0     |
| C(29)-N(8)-C(22) | 111.8(15) |
| C(29)-N(8)-H(8)  | 124.1     |
| C(22)-N(8)-H(8)  | 124.1     |

| C(29)-N(9)-C(23)             | 111.5(14)                    |
|------------------------------|------------------------------|
| C(29)-N(9)-H(9A)             | 124.3                        |
| C(23)-N(9)-H(9A)             | 124.3                        |
| N(1)-C(1)-C(2)               | 123.2(16)                    |
| N(1)-C(1)-H(1)               | 118.4                        |
| C(2)-C(1)-H(1)               | 118.4                        |
| C(3)-C(2)-C(1)               | 119.7(17)                    |
| C(3)-C(2)-H(2)               | 120.1                        |
| C(1)-C(2)-H(2)               | 120.1                        |
| C(2)-C(3)-C(4)               | 119.5(16)                    |
| C(2)-C(3)-H(3)               | 120.3                        |
| C(4)-C(3)-H(3)               | 120.3                        |
| C(3)-C(4)-C(5)               | 119.2(15)                    |
| C(3)-C(4)-H(4)               | 120.4                        |
| C(5)-C(4)-H(4)               | 120.4                        |
| N(1)-C(5)-C(4)               | 123.0(15)                    |
| N(1)-C(5)-C(6)               | 113.5(12)                    |
| C(4)-C(5)-C(6)               | 123.5(14)                    |
| N(2)-C(6)-C(7)               | 118.3(14)                    |
| N(2)-C(6)-C(5)               | 114.6(11)                    |
| C(7)-C(6)-C(5)               | 127.1(14)                    |
| C(6)-C(7)-C(8)               | 119.0(14)                    |
| C(6)-C(7)-H(7)               | 120.5                        |
| C(8)-C(7)-H(7)               | 120.5                        |
| C(9)-C(8)-C(7)               | 120.3(12)                    |
| C(9)-C(8)-H(8A)              | 119.8                        |
| C(7)-C(8)-H(8A)              | 119.8                        |
| C(8)-C(9)-C(10)              | 120.5(13)                    |
| C(8)-C(9)-H(9)               | 119.8                        |
| Table S5.Selective bond leng | ths [Å] of complex <b>9d</b> |
| Ru(1)-N(2)                   | 1.982(4)                     |
| Ru(1)-N(5)                   | 2.029(4)                     |
| Ru(1)-N(4)                   | 2.067(4)                     |
| Ru(1)-N(1)                   | 2.083(5)                     |
| Ru(1)-N(3)                   | 2.090(5)                     |
| O(5)-H(5O)                   | 0.91(3)                      |

| Ru(1)-N(2)  | 1.980(4) |
|-------------|----------|
| Ru(1)-N(5)  | 2.027(4) |
| Ru(1)-N(4)  | 2.067(4) |
| Ru(1)-N(1)  | 2.083(5) |
| Ru(1)-N(3)  | 2.090(5) |
| Ru(1)-O(3)  | 2.125(4) |
| O(1)-C(28)  | 1.242(8) |
| O(2)-C(29)  | 1.213(9) |
| O(3)-H(3OA) | 0.90(3)  |
| O(3)-H(4OA) | 0.90(3)  |
| N(1)-C(1)   | 1.334(8) |
| N(1)-C(5)   | 1.367(7) |
| N(2)-C(10)  | 1.340(8) |
| N(2)-C(6)   | 1.348(8) |
| N(3)-C(15)  | 1.339(8) |
| N(3)-C(11)  | 1.359(7) |
| N(4)-C(27)  | 1.342(7) |
| N(4)-C(16)  | 1.352(7) |
| N(5)-C(18)  | 1.349(7) |
| N(5)-C(17)  | 1.357(6) |
| N(6)-C(28)  | 1.349(8) |
| N(6)-C(23)  | 1.437(8) |
| N(6)-H(6)   | 0.8600   |
| N(7)-C(28)  | 1.353(9) |
| N(7)-C(22)  | 1.446(7) |
| N(7)-H(7N)  | 0.8600   |
| N(8)-C(29)  | 1.359(9) |
| N(8)-C(23)  | 1.450(8) |
| N(8)-H(8N)  | 0.8600   |
| N(9)-C(29)  | 1.368(9) |
| N(9)-C(22)  | 1.443(9) |
| N(9)-H(9N)  | 0.8600   |
|             |          |

## Table S6.Selective bond angle [°] of complex 9d

H(6O)-O(5)-H(5O) 94(9)

| N(2)-Ru(1)-N(5)    | 97.18(17)  |
|--------------------|------------|
| N(2)-Ru(1)-N(4)    | 176.85(17) |
| N(5)-Ru(1)-N(4)    | 79.67(16)  |
| N(2)-Ru(1)-N(1)    | 79.39(19)  |
| N(5)-Ru(1)-N(1)    | 86.08(18)  |
| N(4)-Ru(1)-N(1)    | 100.21(18) |
| N(2)-Ru(1)-N(3)    | 78.77(19)  |
| N(5)-Ru(1)-N(3)    | 95.86(18)  |
| N(4)-Ru(1)-N(3)    | 101.55(18) |
| N(1)-Ru(1)-N(3)    | 158.15(18) |
| N(2)-Ru(1)-O(3)    | 92.90(17)  |
| N(5)-Ru(1)-O(3)    | 169.44(17) |
| N(4)-Ru(1)-O(3)    | 90.24(17)  |
| N(1)-Ru(1)-O(3)    | 92.72(17)  |
| N(3)-Ru(1)-O(3)    | 89.17(18)  |
| Ru(1)-O(3)-H(3OA)  | 168(7)     |
| Ru(1)-O(3)-H(4OA)  | 114(7)     |
| H(3OA)-O(3)-H(4OA) | 77(9)      |
| C(1)-N(1)-C(5)     | 119.4(5)   |
| C(1)-N(1)-Ru(1)    | 127.3(4)   |
| C(5)-N(1)-Ru(1)    | 112.7(4)   |
| C(10)-N(2)-C(6)    | 123.0(5)   |
| C(10)-N(2)-Ru(1)   | 119.1(4)   |
| C(6)-N(2)-Ru(1)    | 117.9(4)   |
| C(15)-N(3)-C(11)   | 118.7(5)   |
| C(15)-N(3)-Ru(1)   | 128.1(4)   |
| C(11)-N(3)-Ru(1)   | 113.2(4)   |
| C(27)-N(4)-C(16)   | 118.1(4)   |
| C(27)-N(4)-Ru(1)   | 127.6(4)   |
| C(16)-N(4)-Ru(1)   | 114.2(3)   |
| C(18)-N(5)-C(17)   | 117.8(4)   |
| C(18)-N(5)-Ru(1)   | 126.8(4)   |
| C(17)-N(5)-Ru(1)   | 115.0(3)   |
| C(28)-N(6)-C(23)   | 111.9(5)   |
| C(28)-N(6)-H(6)    | 124.1      |
| C(23)-N(6)-H(6)    | 124.1      |

| C(28)-N(7)-C(22) | 112.7(5) |
|------------------|----------|
| C(28)-N(7)-H(7N) | 123.7    |
| C(22)-N(7)-H(7N) | 123.7    |
| C(29)-N(8)-C(23) | 113.8(5) |
| C(29)-N(8)-H(8N) | 123.1    |
| C(23)-N(8)-H(8N) | 123.1    |
| C(29)-N(9)-C(22) | 112.6(5) |
| C(29)-N(9)-H(9N) | 123.7    |
| C(22)-N(9)-H(9N) | 123.7    |
| N(1)-C(1)-C(2)   | 121.5(6) |
| N(1)-C(1)-H(1)   | 119.2    |
| C(2)-C(1)-H(1)   | 119.2    |
| C(3)-C(2)-C(1)   | 119.3(7) |
| C(3)-C(2)-H(2)   | 120.3    |
| C(1)-C(2)-H(2)   | 120.3    |
| C(2)-C(3)-C(4)   | 119.7(7) |
| C(2)-C(3)-H(3A)  | 120.2    |
| C(4)-C(3)-H(3A)  | 120.2    |
| C(3)-C(4)-C(5)   | 119.6(7) |
| C(3)-C(4)-H(4)   | 120.2    |
| C(5)-C(4)-H(4)   | 120.2    |
| N(1)-C(5)-C(4)   | 120.3(6) |
| N(1)-C(5)-C(6)   | 115.7(5) |
| C(4)-C(5)-C(6)   | 123.9(6) |
| N(2)-C(6)-C(7)   | 118.5(6) |
| N(2)-C(6)-C(5)   | 114.0(5) |
| C(7)-C(6)-C(5)   | 127.4(6) |
| C(8)-C(7)-C(6)   | 119.0(6) |
| C(8)-C(7)-H(5N)  | 120.5    |
| C(6)-C(7)-H(5N)  | 120.5    |
| C(9)-C(8)-C(7)   | 120.7(6) |
| C(9)-C(8)-H(3N)  | 119.7    |
| C(7)-C(8)-H(3N)  | 119.7    |
| C(8)-C(9)-C(10)  | 118.9(6) |



**Figure S9.** Pourbiax diagram for **9b** in aqueous B. R. Buffer solution (10 % Acetonitrile). The solid black lines indicate trends of redox potentials ( $E_{1/2}$ ) depending on pH Values. The blue triangles, red circles and black squares are observed Ru<sup>V</sup>/Ru<sup>IV</sup>, Ru<sup>IV</sup>/Ru<sup>III</sup> and Ru<sup>III</sup>/Ru<sup>III</sup> redox couples respectively.



Figure S10. Crystal structure of 9c and 9d with anions Cl<sup>-</sup> and CF<sub>3</sub>SO<sup>3-</sup>respectively



Figure S11. Comparative oxygen evolution of complexes 9b and 1 at pH 1 at 25 °C

References: 1. J. Patel, K. Majee, E. Ahamad, B. Das and S. K. Padhi, *Eur. J. Inorg. Chem.* 2017, 160-171