Supporting Information

A new layers-stacked porous framework showing sorption selectivity for

CO₂ and luminescence

Hong-Yun Yang,^a Yong-Zhi Li,^a Wen-Juan Shi,^{a,b} Lei Hou,^{*a} Yao-Yu Wang^a and Zhonghua Zhu^c

^{*a*}Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi'an 710127 (P. R. China).

^bDepartment of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China;

^cSchool of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia.

*Corresponding author Email address: lhou2009@nwu.edu.cn

Fig. S1 IR spectra of as synthesized and desolvated samples of complex 1.

Fig. S2 a) Different coordination fashions of tzba²⁻ ligands in complex 1. b) 3D supramolecular framework of complex 1. c) 2D stacked layers of complex 1 viewed along the (10ī) direction. d) Cross-sectioned pores in complex 1.

Fig. S3 PXRD patterns of complex **1**. Compared to the PXRD patterns between the assynthesized sample and desolvated sample, some diffraction peaks strengthens or weaken, this is due to a slight deformation of the framework, for example, slipping occurs between the layers.

Fig. S4 TGA curves of as-synthesized and desolvated samples of complex 1.

CO₂/CH₄ selectivity prediction via IAST

The experimental isotherm data for pure CO₂, and CH₄ were fitted using a dual Langmuir-Freundlich (L-F) model:

$$q = \frac{a_1 * b_1 * P^{c_1}}{1 + b_1 * P^{c_1}} + \frac{a_2 * b_2 * P^{c_2}}{1 + b_2 * P^{c_2}}$$

Where q and p are adsorbed amounts and the pressure of component i, respectively.

The adsorption selectivities for binary mixtures of CO₂/CH₄, defined by

$$\mathbf{S}_{i/j} = \frac{x_i * y_j}{x_j / y_i}$$

were respectively calculated using the Ideal Adsorption Solution Theory (IAST) of Myers and Prausnitz. Where xi is the mole fraction of component i in the adsorbed phase and yi is the mole fraction of component i in the bulk.

Fig. S5 (a) CO₂ adsorption isotherms of complex **1a** with fitted by dual L-F model: 273.15 K, a1 = 0.90366, b1 = 0.26991, c1 = 0.95533, a2 = 4.79653, b2 = 0.003, c2 = 0.94606, Chi^2 = 6.7977E-6, R^2 = 0.99998; (b) CH₄ adsorption isotherms of complex **1a** with fitting by L-F model: 273.15 K, a1 = 2.42095, b1 = 0.0016, c1 = 1.24142, a2 = 0.08661, b2 = 0.04774, c2 = 1.2267, Chi^2 = 4.5509E-7, R^2 = 1; (c) CO₂ adsorption isotherms of complex **1a** with fitted by dual L-F model: 298 K, a1 = 1.00121, b1 = 0.06235, c1 = 1.02864, a2 = 0.97447, b2 = 0.00006, c2 = 1.99542, Chi^2 = 3.2931E-6, R^2 = 0.99998; (d) CH₄ adsorption isotherms of complex **1a** with fitting by L-F model: 298 K, a1 = 0.05098, b1 = 0.01549, c1 = 1.69281, a2 = 1.58611, b2 = 0.0007, c2 = 1.33575, Chi^2 = 9.5587E-7, R^2 = 0.99996.

Calculation of sorption heat for CO₂ uptake using Virial 2 model

$$\ln P = \ln N + 1/T \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i \qquad \qquad Q_{\rm st} = -R \sum_{i=0}^{m} a_i N^i$$

The above virial expression was used to fit the combined isotherm data for **1a** at 273.15 and 298 K, where *P* is the pressure, *N* is the adsorbed amount, *T* is the temperature, a_i and b_i are virial coefficients, and *m* and *N* are the number of coefficients used to describe the isotherms. Q_{st} is the coverage-dependent enthalpy of adsorption and *R* is the universal gas constant.

Fig. S6 a) CO₂ adsorption isotherms for complex **1a** fitted by Virial 2 model. Fitting results: a0=-5051.67716, a1 = 154.56192, a2 = -11.91459, a3 = 0.48905, a4 = -0.00615, b0 = 16.74849, b1 = -0.54618, b2 = 0.04899, b3 = -0.00195, b4 = 0.00002, Chi² = 0.00008, R² = 0.99998. (b) Adsorption heat of CO₂ adsorption in complex **1a**.

Fig. S7 Emission and excitation spectra of bpy (a), H_2 tzba (b), complex 1 (c) and snapshots under UV light (365 nm) (d).

Complex	1
Chemical formula	$C_{26}H_{19}N_{10}O_6Zn_3$
Formula weight	763.62
T (K)	296(2)
Crystal system	Triclinic
Space group	$P\bar{1}$
a(Å)	12.1420(15)
b (Å)	12.5243(16)
c (Å)	13.6323(17)
α (°)	78.056(2)
β (°)	69.652(2)
γ (°)	79.849(2)
$V(Å^3)$	1889.3(4)
Z	2
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.342
$\mu (mm^{-1})$	1.935
Reflns collected/unique	10224/7202
GOF	1.071
Rint	0.0230
R_1^{in} [I > 2 σ]	0.0792
wR_2^{b} [I > 2 σ]	0.2439
$aR_1 = \Sigma F_0 - F_c) / \Sigma F_0 ; \ ^b wR_2 = [\Sigma w$	$(F_{\rm o}^2 - F_{\rm c}^2)^2 / \Sigma w (F_{\rm o}^2)^2]^{1/2}$.

 Table S1. Crystallographic data and structural refinements for complex 1.

 Table S2. Selected bond lengths (Å) and bond angles (°) for complex 1.

O(5)-Zn(1)	1.990(4)	O(3)-Zn(2)-O(5)	93.8(2)
Zn(1)-N(1)	2.014(5)	N(10)-Zn(2)-O(5)	87.9(2)
Zn(1)-N(7)#4	1.979(6)	O(3)-Zn(2)-O(2)#1	178.24(17)
O(1W)-Zn(1)	1.895(4)	N(10)-Zn(2)-O(2)#1	90.1(2)
O(3)-Zn(2)	2.099(5)	O(5)-Zn(2)-O(2)#1	88.7(2)
Zn(2)-N(10)	2.109(6)	O(3)-Zn(2)-N(2)	91.99(17)
Zn(2)-O(2)#1	2.141(4)	N(10)-Zn(2)-N(2)	90.3(2)
Zn(2)-N(2)	2.141(5)	O(5)-Zn(2)-N(2)	90.9(2)
Zn(2)-N(9)	2.143(6)	O(2)#1-Zn(2)-N(2)	88.47(17)
O(5)-Zn(2)	2.134(4)	O(3)-Zn(2)-N(9)	179.4(2)
O(5)-Zn(3)#1	1.991(4)	N(10)-Zn(2)-N(9)	168.4(2)
Zn(3)-O(1W)#3	1.888(4)	O(5)-Zn(2)-N(9)	77.3(2)
Zn(3)-O(4)#2	1.921(5)	O(2)#1-Zn(2)-N(9)	101.16(18)
O(1)-Zn(3)	1.980(5)	N(2)-Zn(2)-N(9)	82.4(2)
O(1W)-Zn(1)-N(7)#4	129.7(6)	O(1W)#3-Zn(3)-O(4)#2	97.1(2)
O(1W)-Zn(1)-O(5)	110.7(2)	O(1W)#3-Zn(3)-O(1)	114.2(3)
N(7)#4-Zn(1)-O(5)	108.77(18)	O(4)#2-Zn(3)-O(1)	108.3(2)
N(7)#4-Zn(1)-N(1)	110.4(2)	O(1W)#3-Zn(3)-O(5)#2	110.9(3)
O(5)-Zn(1)-N(1)	113.0(2)	O(4)#2-Zn(3)-O(5)#2	108.87(18)
O(1W)-Zn(1)-N(1)	113.2(2)	O(1)-Zn(3)-O(5)#2	102.3(2)
O(3)-Zn(2)-N(10)	100.36(18)		

Symmetry transformations used to generate equivalent atoms: #1 x, y-1, z; #2 x, y+1, z; #3 -x+1, - y+2, -z; #4 -x+1, -y+1, -z+1.

Table	S3 .	Comparison	of CO ₂	adsorption	amounts	at	1	atm	and	298	K	of	complex	1a	and
selected	d otl	ner MOFs.													

MOFs	Adsorption amount (wt%)	Reference
		S
$[Zn_3(\mu_3-OH)(tzba)_2(bpy)(H_2O)]$	5.4	This work
SNU-70	3.5	1
MOF-177	3.4	2
IRMOF-3	4.7	3
UMCM-1	3.8	3
IRMOF-9-I	3.1	4
UCY-1	4.3	5
MOF-5	4.5	5
JLU-Liu33	3.9	6
MOF-205-OBn	4.1	7

References

- 1 T. K. Prasad and M. P. Suh, *Chem. Eur. J.*, 2012, **18**, 8673.
- 2 A. R. Millward and O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 17998.
- 3 A. Ö. Yazaydin, R. Q. Snurr, T.-H. Park, K. Koh, J. Liu, M. D. L. Van, A. I. Benin, P. Jakubczak, M. Lanuza, D. B. Galloway, J. J. Low and R. R. Willis, *J. Am. Chem. Soc.*, 2009, 131, 18198.
- 4 R. Babarao, C. J. Coghlan, D. Rankine, W. M. Bloch, G. K. Gransbury, H. Sato, S. Kitagawa,
 C. J. Sumby, M. R. Hill and C. J. Doonan, *Chem. Commun.*, 2014, **50**, 3238.
- 5 M. J. Manos, M. S. Markoulides, C. D. Malliakas, G. S. Papaefstathiou, N. Chronakis, M. G. Kanatzidis, P. N. Trikalitis and A. J. Tasiopoulos, *Inorg. Chem.*, 2011, 50, 11297.
- 6 X. Sun, S. Yao, G. Li, L. Zhang, Q. Huo and Y. Liu, *Inorg. Chem.*, 2017, 56, 6645.
- 7 J. Sim, H. Yim, N. Ko, S. B. Choi, Y. Oh, H. J. Park, S. Park and J. Kim, *Dalton Trans.*, 2014, **43**, 18017.

Table S4. Comparison of CO_2 separation performances at 1 atm and 298 K of complex **1a** and selected other MOFs.

MOFs	Selectivity	References
UTSA-49	33.7	1
MPM-1-TIFSIX	20.3	2
[Eu(Hpzbc) ₂ (NO ₃)]	10.3ª/12.8b	3

NJU-Bai33	8.9 ^b	4
$[Zn_3(\mu_3-OH)(tzba)_2(bpy)(H_2O)]$	10.5 ^a /7.9 ^b	This work
SNU-151'	7.2 ^b	5
UiO-66	6.87 ^b	6
JLU-Liu6	6.8 ^a	7
Zr-UiO-67 _{AcOH}	6.8 ^a	8
Co ₉ –INA	6.2 ^b	9
[Zn(TPTA) _{0.5} (BIBP)]	6.0 ^b	10
[Cd(L4)]	5.1ª/6.0b	11
ZIF-100	5.9 ^b	12
JLU-Liu38	5.4 ^a /5.6 ^b	13
JLU-Liu18	5.4ª/ 4.5 ^b	14
Cu-MOF 1	4.9-5.4	15
JLU-5	4.3ª/4.6b	16
NOTT-101	4.5 ^b	17
[Cu(INIA)]	4.3 ^b	18
dia-7i-1-Co	4.0ª/4.1b	19
JLU-Liu37	3.8ª/3.8b	13
Ni ₂ (bdc) ₂ (dabco)	3.3ª	20
DMOF	3.2 ^b	21
ZIF-25	2.53 ^b	22
MIL-53(Al)	2.3 ^b	23
$Cu_3(btc)_2$	2.28 ^b	23
MOF-205	2.2 ^b	24
UMCM-1	1.82 ^b	23
ZIF-8	1.32 ^a	23

 $^{a}CO_{2}/CH_{4} = 5:95; \ ^{b}CO_{2}/CH_{4} = 50:50.$

References

- S. Xiong, Y. Gong, H. Wang, H. Wang, Q. Liu, M. Gu, X. Wang, B. Chen and Z. Wang, *Chem. Commun.*, 2014, **50**, 12101.
- 2 P. S. Nugent, V. L. Rhodus, T. Pham, K. Forrest, L. Wojtas, B. Space and M. J. Zaworotko, J. Am. Chem. Soc., 2013, 135, 10950.
- 3 G.-P. Li, G. Liu, Y.-Z. Li, L. H, Y.-Y. Wang and Z. Zhu, *Inorg. Chem.*, 2016, 55, 3952.
- 4 J. Jiang, Q. Wang, M. Zhang and J. Bai, Cryst. Growth Des., 2017, 17, 2223.
- 5 M.-H. Choi, H. J. Park, D. H. Hong and M. P. Suh, *Chem.- Eur. J.*, 2013, **19**, 17432.
- 6 D. H. Hong and M. P. Suh, *Chem. Eur. J.*, 2014, **20**, 426.
- 7 D. Wang, T. Zhao, Y. Cao, S. Yao, G. Li, Q. Huo and Y. Liu, *Chem. Commun.*, 2014, 50, 8648.

- P. Xydias, I. Spanopoulos, E. Klontzas, G. E. Froudakis and P. N. Trikalitis, *Inorg. Chem.*, 2014, 53, 679.
- 9 E. E. Moushi, A. Kourtellaris, I. Spanopoulos, M. J. Manos, G. S. Papaefstathiou, P. N. Trikalitis and A. J. Tasiopoulos, *Cryst. Growth Des.*, 2015, 15, 185.
- 10 T. Ding, X.-X. Wang, M. Zhang, S.-M. Ou and T.-J. Hu, CrystEngComm, 2017, 19, 3313.
- B. Liu, H.-F. Zhou, L. Hou, J.-P. Wang, Y.-Y. Wang and Z. Zhu. *Inorg. Chem.*, 2016, 55, 8871.
- 12 B. Wang, A. P. Cote, H. Furukawa, M. O'Keeffe and O. M. Yaghi, Nature, 2008, 453, 207.
- 13 J. Li, X. Luo, N. Zhao, L. Zhang, Q. Huo and Y. Liu, Inorg. Chem., 2017, 56, 4141.
- 14 S. Yao, D. Wang, Y. Cao, G. Li, Q. Huo and Y. Liu, J. Mater. Chem. A, 2015, 3, 16627.
- 15 G. Feng, Y. Peng, W. Liu, F. Chang, Y. Dai and W. Huang, *Inorg. Chem.*, 2017, 56, 2363.
- 16 D. Wang, T. Zhao, Y. Cao, S. Yao, G. Li, Q. Huo and Y. Liu, *Chem. Commun.*, 2014, 50, 8648.
- 17 C. Song, Y. He, B. Li, Y. Ling, H. Wang, Y. Feng, R. Krishna and B. Chen, *Chem. Commun.*, 2014, 50, 12105.
- 18 Y. Xiong, Y.-Z. Fan, R. Yang, S. Chen, M. Pan, J.-J. Jiang and C.-Y. Su, *Chem. Commun.*, 2014, **50**, 14631.
- T. Pham, K. A. Forrest, B. Tudor, S. K. Elsaidi, M. H. Mohamed, K. McLaughlin, C. R. Cioce, M. J. Zaworotko and B. Space, *Langmuir*, 2014, **30**, 6454.
- P. Mishra, S. Edubilli, B. Mandal and S. Gumma, *Microporous Mesoporous Mater.*, 2013, 169, 75.
- N. C. Burtch, H. Jasuja, D. Dubbeldam and K. S. Walton, J. Am. Chem. Soc., 2013, 135, 7172.
- Y. Houndonougbo, C. Signer, N. He, W. Morris, H. Furukawa, K. G. Ray, D. L. Olmsted, M. Asta, B. B. Laird and O. M. Yaghi, *J. Phys. Chem. C.*, 2013, 117, 10326.
- 23 Z. Xiang, X. Peng, X. Cheng, X. Li and D. Cao, J. Phys. Chem. C., 2011, 115, 19864.
- 24 J. Sim, H. Yim, N. Ko, S. B. Choi, Y. Oh, H. J. Park, S. Park and J. Kim, *Dalton Trans.*, 2014, 43, 18017.

GCMC Simulation Methodlody

Grand canonical Monte Carlo (GCMC) simulations were performed for the adsorption of CO₂ in complex by Material Studio.¹ The framework and CO₂ molecule were considered to be rigid. The partial charges for carbon and oxygen atoms of CO₂ molecules were 0.576*e* and -0.288*e*, respectively,² which are similar to the values in reports.³ The partial charges for atoms of complex were derived from QEq method and QEq_neutral1.0 parameter (Table S5). One unit cell was used during the simulations. The interaction energies between CO₂ and framework were computed through the Coulomb and Lennard-Jones 6-12 (LJ) potentials. All parameters for CO₂ molecule and atoms of complex were modeled with the universal forcefield (UFF) embedded in the MS modeling package. A cutoff distance of 12.5 Å was used for LJ interactions, and the Coulombic interactions were calculated by using Ewald summation. For each run, the 5×10^6 maximum loading steps, 1×10^7 production steps, automated temperature control in the annealing cycles and 40 temperature cycles were employed.

References

- Accelrys, Materials Studio Getting Started, release 5.0; Accelrys Software, Inc.: San Diego, CA, 2009.
- 2 (a) A. Hirotani, K. Mizukami, R. Miura, H. Takaba, T. Miya, A. Fahmi, A. Stirling, M. Kubo and A. Miyamoto, *Appl. Surf. Sci.*, 1997, 120, 81; (b) H.-H. Wang, W.-J. Shi, L. Hou, G.-P. Li, Z. Zhu and Y.-Y. Wang, *Chem. Eur. J.*, 2015, *21*, 16525.
- 3 (a) J. Yu and P. B. Balbuena, *J. Chem. Phys.* C, 2013, 117, 3383; (b) R. Vaidhyanathan, S. S. Iremonger, G. K. H. Shimizu, P. G. Boyd, S. Alavi and T. K. Woo, *Angew. Chem. Int. Ed.*, 2012, 51, 1826.

			-	-			
Zn1	0.320281	03	-0.470761	C14	-0.126622	H3	0.153598
Zn2	0.350049	04	-0.465163	C15	-0.124026	H4	0.155201
Zn3	0.368399	05	-0.498917	C16	0.680672	H6	0.160405
N1	-0.196104	C1	0.287428	C17	0.0414661	H7	0.170151
N2	-0.0144975	C2	0.00249194	C18	-0.119171	H11	0.138008
N3	-0.150917	C3	-0.139143	C19	-0.143366	H12	0.148249
N4	-0.262908	C4	-0.135447	C20	-0.158148	H14	0.151071
N5	-0.279908	C5	0.0263794	C21	0.183690	H15	0.160519
N6	-0.140398	C6	-0.137133	C22	0.188322	H17	0.157880

 Table S5. The atomic partial charges (e) in complex 1a.

N7	0.00160322	C7	-0.141677	C23	-0.162146	H18	0.163036
N8	-0.246201	C8	0.649530	C24	-0.146161	H19	0.152204
N9	-0.262053	C9	0.336823	C25	-0.137811	H20	0.106017
N10	-0.225937	C10	0.0187771	C26	0.0559297	H23	0.103053
01	-0.489926	C11	-0.140015	H1W A	0.327581	H24	0.138982
O1W	-0.782179	C12	-0.138521	H1WB	0.311685	H25	0.160600
02	-0.465831	C13	0.0164634	H5A	0.367678	H26	0.146861