Supplementary Information for

"Hierarchical and chemical space partitioning in new intermetallic borides $MNi_{21}B_{20}$ (M = In, Sn)"

Frank R. Wagner,^a Qiang Zheng,^{*,a,§} Roman Gumeniuk,^{a,b} David Bende,^a Yurii Prots,^a Matej Bobnar,^a Dong-Li Hu,^c Ulrich Burkhardt,^a Yuri Grin^a and Andreas Leithe-Jasper^a

^a Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden,

Germany.

^b Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Str. 23, 09596 Freiberg, Germany.

^c Materials Genome Institute and School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China

* Corresponding author. Email: <u>zheng@cpfs.mpg.de</u>; <u>qiangzhengsic@gmail.com</u>

§ Present address: Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Atoms		SnNi ₂₁ B ₂₀	InNi ₂₁ B ₂₀	CN ^a
M ^b	-12Ni3	2.9350(4)	2.9179(4)	12
Ni1	-4B2	2.039(4)	2.021(4)	12
	-8Ni3	2.5703(3)	2.5646(3)	
Ni2	-4B2	2.162(5)	2.170(4)	16
	-4B1	2.164(4)	2.154(5)	
	-4Ni3	2.7176(9)	2.7169(9)	
	-4Ni2	2.719(2)	2.731(2)	
Ni3	-2B1	2.091(4)	2.096(4)	15
	-4B2	2.186(3)	2.183(3)	
	-2Ni1	2.5703(3)	2.5646(3)	
	-2Ni2	2.7176(9)	2.7169(9)	
	-1M	2.9350(4)	2.9179(4)	
	-4Ni3	2.9350(4)	2.9179(4)	
B1	-3B2	1.760(6)	1.764(5)	9
	-3Ni3	2.091(4)	2.096(4)	
	-3Ni2	2.164(4)	2.154(5)	
B2	-2B1	1.760(6)	1.764(5)	9
	-1Ni1	2.039(4)	2.021(4)	
	-2Ni2	2.162(5)	2.170(4)	
	-4Ni3	2.186(3)	2.183(3)	

Table S1. Interatomic distances (Å) in the structures of $SnNi_{21}B_{20}$ and $InNi_{21}B_{20}$

^{*a*} CN= coordination number; M =Sn or In

Composition	SnNi ₂₁ B ₂₀	InNi ₂₁ B ₂₀		
Space group	$Pm^{3}m$			
<i>a</i> (Å)	7.17585(2)	7.16608(9)		
$V(Å^3)$	369.505(3)	368.00(2)		
Calculated density/(g cm ⁻³)	7.045	7.056		
Ζ		1		
λ (Å)	0.4	0073		
2θ range (°)	1 t	o 40		
T/K	100	80		
μ/mm^{-1}	8.598	8.424		
Reflns in measured	19499			
Refined parameters	18	15		
Refinement method	Full-profile Rietveld			
$R_{\rm I}; R_{\rm p}$	0.057; 0.086	0.064; 0.080		

Table S2. Crystallographic data for $SnNi_{21}B_{20}$ and $InNi_{21}B_{20}$ at low temperatures from synchrotrondiffraction data

Table S3. Atomic coordinates, isotropic and anisotropic displacement parameters (in $Å^2$) for

SnNi ₂₁ B ₂₀ and InNi ₂₁ B ₂₀ respectively at 100 K and 80 K from synchrotro	on diffraction data
--	---------------------

Atom	site	x	у	Ζ	B_{iso}/B_{eq}	<i>B</i> ₁₁	B_{22}	B ₃₃	B_{12}	<i>B</i> ₁₃	B_{23}
SnNi ₂₁	B ₂₀										
Sn	1 <i>a</i>	0	0	0	1.33(2)	1.33(3)	B_{11}	B_{11}	0	0	0
Nil	3 <i>d</i>	0	0	1/2	1.18(3)	1.02(4)	B_{11}	1.50(6)	0	0	0
Ni2	6 <i>f</i>	1/2	0.2319(2)	1/2	1.14(2)	1.04(3)	1.35(5)	B_{11}	0	0	0
Ni3	12 <i>i</i>	0.28889(6)	x	0	1.16(2)	1.24(2)	B_{11}	0.99(4)	0.15(2)	0	0
B1	8g	0.2920(5)	x	x	1.33(7)	1.3(1)	B_{11}	B_{11}	-0.3(2)	B_{12}	B_{12}
B2	12j	1/2	0.2011(5)	у	1.0(1)	0.9(2)	1.1(1)	B_{22}	0	0	0.1(2)
InNi ₂₁ I	B_{20}										
In	1 <i>a</i>	0	0	0	0.97(1)	0.97(2)	B_{11}	B_{11}	0	0	0
Ni1	3 <i>d</i>	0	0	1/2	0.85(3)	0.79(3)	B_{11}	0.95(5)	0	0	0
Ni2	6 <i>f</i>	1/2	0.2308(1)	1/2	0.77(2)	0.72(2)	0.86(4)	B_{11}	0	0	0
Ni3	12 <i>i</i>	0.28725(5)	x	0	0.81(1)	0.90(2)	<i>B</i> ₁₁	0.64(3)	0.07(2)	0	0
B1	8g	0.2921(5)	x	x	1.1(1)						
B2	12j	1/2	0.1990(4)	у	0.98(7)						

Composition	$SnNi_{21}B_{20}$
Space group	Pm ³ m
<i>a</i> (Å)	7.1834(1)
$V(Å^3)$	370.67(2)
Calculated density/(g cm ⁻³)	7.023
Ζ	1
Radiation; λ (Å)	Mo <i>K</i> _α ; 0.71073 Å
$2\theta_{\max}(^{\circ})$	67.16
N(hkl) _{measured}	3035
N(hkl) _{unique}	185
$N(hkl)_{\text{observed}} (F_{hkl} > 4\sigma(F))$	178
$R_{\rm int}/R_{\sigma}$	0.089/0.041
Refined parameters	16
$R_F / w R_F^2$	0.063/0.065
Extinction coefficient	_

Table S4. Crystallographic data for $SnNi_{21}B_{20}$ at 293 K from single crystal diffraction data

Table S5. Atomic coordinates, isotropic and anisotropic displacement parameters (in Å²) for $SnNi_{21}B_{20}$ at 293 K from single crystal diffraction data

Atom	site	x	у	Z	B_{iso}/B_{eq}	<i>B</i> ₁₁	<i>B</i> ₂₂	B ₃₃	<i>B</i> ₁₂	<i>B</i> ₁₃	<i>B</i> ₂₃
Sn	1 <i>a</i>	0	0	0	1.48(3)	1.48(5)	<i>B</i> ₁₁	B_{11}	0	0	0
Nil	3 <i>d</i>	0	0	1/2	1.13(5)	0.89(7)	B_{11}	1.6(2)	0	0	0
Ni2	6 <i>f</i>	$1/_{2}$	0.2324(3)	$^{1}/_{2}$	0.82(3)	0.74(4)	0.99(7)	B_{11}	0	0	0
Ni3	12 <i>i</i>	0.2888(1)	x	0	1.05(3)	1.22(4)	B_{11}	0.71(6)	0.21(4)	0	0
B1	8g	0.296(1)	x	x	0.7(2)						
B2	12j	1/2	0.1967(9)	у	0.7(2)						

M	Xo	ρ_0	$ ho_{300}$	RRR	γ	β	δ	$\Theta_{\rm D}(0)$
	(emu mol ⁻¹)	(μΩm)	(μΩm)		(mJ mol ⁻¹ K ⁻²)	(J mol ⁻¹ K ⁻⁴)	(J mol ⁻¹ K ⁻⁶)	(K)
Sn	8.28(2)×10 ⁻⁴	4.02(6) ×10 ⁻²	1.65	41	76.9(1)	2.83(4)×10 ⁻⁴	2.55(2) ×10 ⁻⁶	661
In	5.90(2)×10 ⁻⁴	3.20(6) ×10 ⁻²	8.85×10 ⁻	27.7	59.3(1)	3.66(4) ×10 ⁻⁴	1.99(4) ×10 ⁻⁶	606

Table S6. Physical properties of MNi₂₁B₂₀ (M = Sn, In)

Figure S1. Physical properties of InNi₂₁B₂₀: (a) temperature-dependent magnetic susceptibility $\chi(T)$ in the external magnetic fields $\mu_0 H = 7.0$ T; (b) temperature-dependence of electrical resistivity $\rho(T)$; (c) temperature-dependence of heat capacity $c_p(T)$, and the inset shows its fitting by $c_p(T) = \gamma T + \beta T^3 + \delta T^5$ from 2.0 K to 10K.