Supporting Information

CFA-13 - a bifunctional perfluorinated metal-organic framework featuring active Cu(I) and Cu(II) sites

Julia Fritzsche,^a Dmytro Denysenko,^a Maciej Grzywa^a and Dirk Volkmer^{*a}

^a Institute of Physics, Chair of Solid State and Materials Chemistry, Augsburg University, Universitätsstrasse 1, 86159 Augsburg, Germany

Contents:

1.	Gas sorption measurements	S2
2.	TGA measurements	S 6
3.	IR spectra	S 8
4.	Ammonia pulse chemisorption measurement	S9
5.	X-ray powder diffraction patterns	S10
6.	EDX data	S11
7.	Crystallographic data	S12

^{*} Corresponding author. Fax: +49 (0)821 598–5955; Tel: +49 (0)821 598–3006; E–mail: dirk.volkmer@physik.uni–augsburg.de

1. Gas sorption measurements

Fig. S1 CO_2 adsorption isotherms at 273 K for as-synthesized (Me₂NH₂)[CFA-13](DMF) and solvent-exchanged samples.

The isosteric heats of adsorption were calculated from the measured isotherms (Figs. S2-3) using the Clausius-Clapeyron equation (I). The slopes of linear plots lnP versus 1/RT for different loadings (Fig. S4-5) give the adsorption enthalpies, according to the equation (II).

$$Q_{st} = -R \left(\frac{\partial (\ln P)}{\partial (1/T)} \right)_{\theta} \quad (\mathbf{I}), \, \Theta - \text{surface coverage}$$

$$\ln P = -\frac{Q_{st}}{R} \left(\frac{1}{T}\right) + C \quad \text{(II), } C - \text{integration constant}$$

The isosteric heat of O_2 adsorption at zero limit surface coverage (initial heat of adsorption) has been determined using Henry's constants K_H , obtained as a slope from the linear ranges of isotherms at low pressure (Table S1 and Fig. S6). In this range the dependence of amount adsorbed (n) on pressure can be expressed with Henry's law (III). The initial isosteric heat of adsorption is obtained similarly using the Clausius-Clapeyron equation (IV) (Fig. S7).

$$n = K_{H} \cdot P(III)$$

$$\lim_{n\to 0} (Q_{st}) = Q_{st}^0 = R\left(\frac{\partial(\ln K_H)}{\partial(1/T)}\right) (\mathbf{IV})$$

Table S1. Henry's constants for O₂ adsorption on (Me₂NH₂)[CFA-13](THF) (cm³ g⁻¹ kPa⁻¹)

T [K]	163	173	183
K _H	4.45	2.25	1.20

Fig. S2 O₂ adsorption isotherms for (Me₂NH₂)[CFA-13](THF) at different temperatures.

Fig. S3 CO adsorption isotherms for (Me₂NH₂)[CFA-13](THF) at different temperatures.

Fig. S4 lnP versus 1/RT plots for different loadings for O₂ adsorption on (Me₂NH₂)[CFA-13](THF).

Fig. S5 lnP versus 1/RT plots for different loadings for CO adsorption on (Me₂NH₂)[CFA-13](THF).

Fig. S6 Determination of Henry's constants for O₂ adsorption on (Me₂NH₂)[CFA-13](THF).

Fig. S7 lnK_H versus 1/RT plot for O₂ adsorption on (Me₂NH₂)[CFA-13](THF).

2. TGA measurements

Fig. S8 Temperature dependent weight loss of $(Me_2NH_2)[CFA-13]$ filled with different solvents under flowing nitrogen gas up to 600 °C.

Fig. S9 Temperature dependent weight loss of $(Me_2NH_2)[CFA-13]$ filled with different solvents under flowing nitrogen gas from room temperature to 300 °C.

Fig. S10 Temperature dependent weight loss of $(Me_2NH_2)[CFA-13]$ under flowing nitrogen gas after activation of 150 °C.

(Me₂NH₂)[CFA-13](THF) (red line) shows similar behaviour as (Me₂NH₂)[CFA-13](DMF) but with a larger first weight loss step at lower temperature and a smaller step at higher temperature. This leads to the fact that the sample has lower fraction of high boiling point solvent as compared to (Me_2NH_2) (CFA-13)(DMF). Nevertheless, the similar curve progression gives the first evidence that the exchange of DMF by THF was not complete. (Me₂NH₂)[CFA-13](MeOH), shows a stable plateau in the range 100-200 °C, whereas (Me₂NH₂)[CFA-13](EtOH) and (Me₂NH₂)[CFA-13](CH₂Cl₂) are stable up to approx. 170 °C (Figs. S8 and S9). No stable plateau is observed for (Me₂NH₂)[CFA-13](DMF) and (Me₂NH₂)[CFA-13](acetone) samples. In order to prove the efficiency of the solvent exchange with MeOH, THF, EtOH, and CH₂Cl₂, the samples were degassed at 150 °C under nitrogen flow until constant weight and examined by TGA again afterwards. (Me₂NH₂)[CFA-13](MeOH), (Me₂NH₂)[CFA-13](EtOH) and (Me₂NH₂)[CFA-13](CH₂Cl₂) show stable plateaus up to 200 °C now (Fig. S10), which demonstrates that residual and coordinated solvent molecules were successfully removed. The TGA curve of the pre-heated (Me₂NH₂)[CFA-13](THF) sample is similar to (Me₂NH₂)[CFA-13](DMF), showing that the exchange of DMF molecules by THF was not complete.

Furthermore, the solvent exchange was monitored by IR-spectroscopy. The solvent is fully exchanged in by acetone, CH₂Cl₂ and MeOH (Figs. S11 and S12), whereas (Me₂NH₂)[CFA-13](THF) still contains a small DMF residue, as can be seen by the characteristic band at 1666 cm⁻¹ (Fig. S12).

3. IR spectra

Fig. S11 IR spectra of the H₂-tfpc ligand and various (Me₂NH₂)[CFA-13](solvent) samples.

Fig. S12 IR spectra in the range 1800-400 cm⁻¹ of the **H**₂-tfpc ligand and various (**Me**₂**NH**₂)[**CFA-13**] (solvent) samples (* - a characteristic band of coordinated DMF molecules).

4. Ammonia Pulse Chemisorption Measurement

Fig. S13 Ammonia pulse chemisorption at (Me_2NH_2) [CFA-13. Measurement of 56 pulses, 55 pulses were used for further analysis. Blue curve: TCD signal; Black curve: mass spectrum m/z 17.

5. X-Ray powder diffraction patterns

Fig. S14 XRPD patterns of K[CFA-13] (green curve), Cs[CFA-13] (red curve) and (Me₂NH₂)[CFA-13] (black curve).

6. EDX Data

Table S2 Cu/metal ratios for different M[CFA-13] samples, calculated from the data shown in Fig. S13-S14.

Sample	Copper/metal ratio
K[CFA-13]	5.62/1
Cs[CFA-13]	5.77/1

Elem	Wt % /	At % K-Ratio	Z	A	F
F K K K CuK Total	38.39 66. 6.08 5. 55.53 28	25 0.1567 10 0.0487 3.65 0.5294	1.0527 1.0356 0.9472	0.3865 0.7661 1.0064	1.0031 1.0099 1.0000
Element	t Net Inte.	Backgrd	Inte. Error	P/B	
F K K K CuK	251.49 110.56 446.56	0.53 0.15 0.41	0.71 1.07 0.53	470.31 723.67 1096.09	

Fig. S15 EDX data for K[CFA-13].

Elem	Wt %	At %	K-Rati	o Z	A	F
FK	29.70	62.13 5.59	0.1427	1.0823	0.4429	1.0025
CuK Total 1	51.60 00.00 10	32.27	0.486	1 0.9788	0.9625	1.0000
Element	Net Int	te. Ba	ackgrd	Inte. Error	P/B	
F K CsL CuK	272.60 139.32 487.91	1	0.38 0.52 0.21	0.70 0.98 0.52	725.75 266.31 2273.25	

Fig. S16 EDX data for Cs[CFA-13].

7. Crystallographic data

Fig. S17 Ortep-style plot of the asymmetric unit of $(Me_2NH_2)[Cu^I_3Cu^I_2(tfpc)_4\cdot 3DMF]\cdot 2.25DMF$. Thermal ellipsoids probability: 50 %. Disordered DMF was omitted for clarity.

Table S3 Atomic coordinates ($x \ 10^4$) and equivalent isotropic atomic displacement parameters (Å² $x \ 10^3$) for (Me₂NH₂)[Cu^I₃Cu^{II}₂(tfpc)₄·3DMF]·2.25DMF. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	у	Ζ	U(eq)
Cu(1)	11942(1)	1021(1)	10331(1)	13(1)
F(1)	11067(2)	800(2)	12117(2)	29(1)
O(1)	10714(2)	-1221(3)	12352(2)	16(1)
N(1)	11733(2)	-119(3)	10840(2)	16(1)
C(1)	11326(2)	-276(4)	11282(2)	13(1)
Cu(2)	12830(1)	1004(1)	9338(1)	13(1)
F(2)	11021(2)	1353(2)	11165(2)	32(1)
O(2)	10755(2)	-2612(3)	11790(2)	16(1)
N(2)	12000(2)	-991(3)	10711(2)	16(1)
C(2)	11310(2)	-1262(4)	11448(2)	14(1)
Cu(3)	12595(1)	-1051(1)	10069(1)	16(1)
F(3)	10364(1)	329(3)	11482(2)	34(1)
O(3)	14427(2)	-2691(3)	8380(2)	14(1)
N(3)	13226(2)	-994(3)	9468(2)	15(1)
C(3)	11742(2)	-1683(4)	11069(3)	18(1)
Cu(4)	9943(1)	1604(1)	7082(1)	10(1)
F(4)	11968(2)	-3150(2)	11601(2)	29(1)
O(4)	14711(2)	-1217(2)	8021(2)	17(1)
N(4)	13299(2)	-165(3)	9118(2)	13(1)
C(4)	11927(3)	-2719(4)	11032(3)	25(1)
Cu(5)	15243(1)	-1698(1)	7377(1)	11(1)
F(5)	12461(2)	-2818(3)	10767(2)	44(1)
O(5)	10461(2)	2902(3)	8152(2)	19(1)
N(5)	11621(2)	1392(3)	9505(2)	13(1)
C(5)	10944(3)	544(4)	11513(3)	21(1)
F(6)	11547(2)	-3259(2)	10685(2)	38(1)
O(6)	10515(2)	1375(3)	7768(2)	16(1)
N(6)	12034(2)	1418(3)	9042(2)	15(1)
C(6)	13606(2)	-1663(4)	9243(3)	15(1)
F(7)	13332(2)	-2717(3)	10064(2)	41(1)
O(7)	10113(2)	196(3)	6705(2)	20(1)
N(7)	8122(2)	3327(3)	5135(2)	15(1)
C(7)	13934(2)	-1291(4)	8743(2)	12(1)
F(8)	14200(2)	-2925(3)	9672(2)	34(1)
O(8)	9360(2)	2010(3)	6448(2)	16(1)

	Х	У	Z	U(eq)
N(8)	7697(2)	3315(3)	5586(2)	16(1)
C(8)	13718(2)	-332(4)	8689(2)	12(1)
F(9)	13417(2)	-3357(2)	9143(2)	36(1)
O(9)	9084(2)	3330(3)	7004(2)	17(1)
N(9)	10827(2)	-925(4)	6546(3)	44(2)
C(9)	10896(2)	-1737(4)	11905(2)	14(1)
F(10)	14455(1)	743(2)	8285(2)	21(1)
O(10)	12412(2)	46(4)	4780(3)	53(1)
N(10)	12936(3)	-167(5)	5683(3)	53(2)
C(10)	13879(2)	454(4)	8225(3)	18(1)
F(11)	13804(1)	166(2)	7629(1)	25(1)
O(11)	12047(2)	-2182(4)	9369(3)	54(1)
N(11)	11320(3)	-1399(5)	8806(3)	56(2)
C(11)	13645(3)	-2662(4)	9525(3)	25(1)
F(12)	13551(1)	1255(2)	8311(2)	23(1)
C(12)	14396(2)	-1770(4)	8353(2)	12(1)
F(13)	10483(2)	829(3)	9981(2)	40(1)
C(13)	11748(2)	1647(4)	8503(3)	16(1)
F(14)	10527(2)	2370(3)	10041(2)	44(1)
C(14)	11144(2)	1805(4)	8601(2)	15(1)
F(15)	10051(2)	1688(4)	9272(2)	55(1)
C(15)	11092(2)	1618(4)	9244(2)	15(1)
F(16)	11743(2)	2055(4)	7428(2)	51(1)
C(16)	12084(2)	1728(4)	7893(3)	22(1)
F(17)	12550(1)	2332(3)	7939(2)	30(1)
C(17)	10538(2)	1652(5)	9632(3)	23(1)
F(18)	12312(2)	871(3)	7710(2)	46(1)
C(18)	10642(3)	-30(4)	6599(3)	28(1)
F(19)	9671(2)	3418(4)	5383(2)	53(1)
C(19)	11446(4)	-1143(6)	6372(5)	72(3)
F(20)	9376(2)	2106(4)	4948(2)	64(1)
C(20)	10430(4)	-1744(6)	6673(5)	73(3)
F(21)	9178(2)	3468(4)	4504(2)	54(1)
C(21)	8647(2)	3107(4)	5423(3)	19(1)
F(22)	7854(2)	2372(3)	7129(2)	36(1)
C(22)	8575(2)	2961(4)	6060(2)	14(1)
C(24)	9041(2)	2742(4)	6548(2)	13(1)
C(25)	9213(3)	3042(6)	5064(3)	39(2)

	х	У	Z	U(eq)
F(23A)	7432(5)	3636(9)	7005(5)	45(3)
F(23B)	7688(5)	4000(7)	7083(5)	30(2)
C(27)	11855(4)	-1750(7)	8890(5)	74(3)
N(12)	8463(3)	-476(4)	6049(3)	60(2)
C(28)	11122(6)	-921(8)	8236(6)	107(4)
C(30)	12662(3)	381(6)	5254(3)	40(2)
C(29)	10893(6)	-1490(12)	9307(7)	149(7)
O(1A)	13879(3)	-2740(4)	11492(4)	84(2)
C(42A)	13544(8)	-2094(10)	11708(10)	77(6)
C(43A)	13228(11)	-451(15)	11876(15)	103(9)
N(1A)	13643(9)	-1147(10)	11636(10)	56(5)
C(44A)	14133(11)	-751(18)	11299(19)	135(18)
C(42B)	14119(8)	-2052(9)	11187(8)	61(5)
N(1B)	13989(7)	-1126(9)	11261(7)	39(4)
C(43B)	13519(13)	-747(17)	11658(17)	101(12)
C(44B)	14281(8)	-403(12)	10881(9)	61(5)
C(34)	15592(8)	1597(9)	6733(8)	146(9)
C(36)	15783(5)	-90(7)	6654(6)	60(3)
F(24A)	7058(3)	3061(8)	6654(4)	35(2)
F(24B)	7093(4)	2344(9)	6565(4)	53(3)
C(50B)	7596(5)	2854(8)	6687(5)	20(2)
C(23B)	7960(9)	3005(14)	6139(10)	18(7)
N(0AA)	15000	0	5000	198(19)
C(1AA)	15370(30)	360(60)	4430(40)	210(30)
O(2AA)	15800(20)	-520(40)	4440(30)	200(20)
C(3AA)	15470(20)	-870(40)	5120(30)	210(20)
C(33B)	15590(20)	-10(40)	5212(15)	69(14)
C(50A)	7650(5)	3177(9)	6776(7)	20(2)
C(23A)	7971(8)	3178(14)	6144(9)	12(6)
O(12)	15395(2)	-307(3)	6990(2)	40(1)
N(13A)	15912(5)	818(7)	6455(6)	105(5)
C(36B)	15353(17)	-370(30)	6392(9)	52(11)
C(33)	16403(10)	1001(15)	6024(13)	209(16)
N(13B)	15592(14)	150(20)	5897(13)	51(9)

Table S4 Bond lengths (Å) for (Me ₂ NH ₂)[Cu ¹ ₃ Cu ¹¹ ₂ (tfpc) ₄ ·3DMF]· <mark>2.</mark>	<mark>.25DMF</mark>	
---	---------------------	--

Cu(1)-N(5)	1.954(4)	N(9)-C(19)	1.467(9)
Cu(1)-N(1)	1.955(4)	F(10)-C(10)	1.354(6)
Cu(1)-N(8)#1	1.989(4)	O(10)-C(30)	1.233(8)
Cu(1)-Cu(2)	2.9070(9)	N(10)-C(30)	1.324(9)
F(1)-C(5)	1.352(7)	N(10)-C(31)	1.442(10)
O(1)-C(9)	1.252(6)	N(10)-C(32)	1.476(11)
O(1)-Cu(4)#2	1.977(3)	C(10)-F(12)	1.332(6)
N(1)-C(1)	1.331(6)	C(10)-F(11)	1.333(6)
N(1)-N(2)	1.365(6)	O(11)-C(27)	1.248(10)
C(1)-C(2)	1.395(7)	N(11)-C(27)	1.301(10)
C(1)-C(5)	1.496(7)	N(11)-C(28)	1.439(12)
Cu(2)-N(6)	1.967(4)	N(11)-C(29)	1.440(12)
Cu(2)-N(4)	1.973(4)	F(13)-C(17)	1.353(7)
Cu(2)-N(7)#1	2.023(4)	C(13)-C(14)	1.386(7)
F(2)-C(5)	1.342(6)	C(13)-C(16)	1.504(7)
O(2)-C(9)	1.261(6)	F(14)-C(17)	1.311(7)
O(2)-Cu(5)#3	1.944(3)	C(14)-C(15)	1.391(7)
N(2)-C(3)	1.346(7)	C(14)-C(45)	1.493(7)
N(2)-Cu(3)	1.915(4)	F(15)-C(17)	1.325(6)
C(2)-C(3)	1.387(7)	C(15)-C(17)	1.495(7)
C(2)-C(9)	1.496(7)	F(16)-C(16)	1.319(7)
Cu(3)-N(3)	1.911(4)	C(16)-F(17)	1.334(6)
F(3)-C(5)	1.332(7)	C(16)-F(18)	1.338(7)
O(3)-C(12)	1.265(6)	F(19)-C(25)	1.327(8)
O(3)-Cu(4)#4	1.975(3)	F(20)-C(25)	1.355(9)
N(3)-C(6)	1.340(6)	F(21)-C(25)	1.323(7)
N(3)-N(4)	1.365(6)	C(21)-C(22)	1.375(7)
C(3)-C(4)	1.480(8)	C(21)-C(25)	1.487(8)
Cu(4)-O(8)	1.946(4)	F(22)-C(50B)	1.281(10)

Cu(4)-O(6)	1.953(4)	F(22)-C(50A)	1.406(10)
Cu(4)-O(7)	2.122(4)	C(22)-C(23B)	1.39(2)
Cu(4)-Cu(5)#5	2.6270(9)	C(22)-C(23A)	1.40(2)
F(4)-C(4)	1.344(7)	C(22)-C(24)	1.493(7)
O(4)-C(12)	1.254(6)	F(23A)-C(50B)	1.319(17)
O(4)-Cu(5)	1.936(3)	F(23B)-C(50A)	1.303(18)
N(4)-C(8)	1.330(6)	N(12)-C(38)	1.454(10)
C(4)-F(5)	1.332(6)	N(12)-C(37)	1.498(10)
C(4)-F(6)	1.342(7)	O(1A)-C(42A)	1.249(15)
Cu(5)-O(9)#4	1.990(4)	O(1A)-C(42B)	1.265(14)
Cu(5)-O(5)#4	2.001(4)	C(42A)-N(1A)	1.325(16)
Cu(5)-O(12)	2.101(4)	C(43A)-N(1A)	1.427(17)
O(5)-C(45)	1.243(6)	N(1A)-C(44A)	1.420(17)
N(5)-C(15)	1.338(7)	C(42B)-N(1B)	1.310(14)
N(5)-N(6)	1.354(6)	N(1B)-C(44B)	1.435(15)
O(6)-C(45)	1.260(6)	N(1B)-C(43B)	1.448(16)
N(6)-C(13)	1.341(7)	C(34)-N(13A)	1.416(13)
C(6)-C(7)	1.391(7)	C(36)-O(12)	1.167(10)
C(6)-C(11)	1.496(8)	C(36)-N(13A)	1.344(13)
F(7)-C(11)	1.346(6)	F(24A)-C(50A)	1.356(11)
O(7)-C(18)	1.245(7)	F(24B)-C(50B)	1.349(11)
N(7)-C(21)	1.354(7)	C(50B)-C(23B)	1.44(2)
N(7)-N(8)	1.355(6)	N(0AA)-C(1AA)	1.55(7)
C(7)-C(8)	1.403(7)	N(0AA)-C(1AA)#6	1.55(7)
C(7)-C(12)	1.482(7)	N(0AA)-C(3AA)#6	1.60(5)
F(8)-C(11)	1.328(7)	N(0AA)-C(3AA)	1.60(5)
O(8)-C(24)	1.250(6)	C(1AA)-O(2AA)	1.55(8)
N(8)-C(23A)	1.34(2)	O(2AA)-C(3AA)	1.70(7)
N(8)-C(23B)	1.37(2)	C(33B)-N(13B)	1.467(19)
C(8)-C(10)	1.503(7)	C(50A)-C(23A)	1.53(2)

F(9)-C(11)	1.348(7)	O(12)-C(36B)	1.273(19)
O(9)-C(24)	1.260(6)	N(13A)-C(33)	1.459(14)
N(9)-C(18)	1.298(8)	C(36B)-N(13B)	1.379(19)
N(9)-C(20)	1.456(9)	N(13B)-C(34B)	1.47(6)

Table S5 Bond angles (°) for $(Me_2NH_2)[Cu^I_3Cu^{II}_2(tfpc)_4 \cdot 3DMF] \cdot 2.25DMF$.

N(5)-Cu(1)-N(1)	127.82(18)	C(30)-N(10)-C(31)	121.1(7)
N(5)-Cu(1)-N(8)#1	115.43(18)	C(30)-N(10)-C(32)	119.9(7)
N(1)-Cu(1)-N(8)#1	114.96(18)	C(31)-N(10)-C(32)	119.0(8)
N(5)-Cu(1)-Cu(2)	66.56(12)	F(12)-C(10)-F(11)	107.8(4)
N(1)-Cu(1)-Cu(2)	124.15(12)	F(12)-C(10)-F(10)	105.8(4)
N(8)#1-Cu(1)-Cu(2)	67.38(12)	F(11)-C(10)-F(10)	106.7(4)
C(9)-O(1)-Cu(4)#2	123.9(3)	F(12)-C(10)-C(8)	111.4(4)
C(1)-N(1)-N(2)	107.7(4)	F(11)-C(10)-C(8)	112.3(4)
C(1)-N(1)-Cu(1)	133.3(4)	F(10)-C(10)-C(8)	112.5(4)
N(2)-N(1)-Cu(1)	118.7(3)	C(27)-N(11)-C(28)	124.0(9)
N(1)-C(1)-C(2)	110.6(4)	C(27)-N(11)-C(29)	118.9(9)
N(1)-C(1)-C(5)	120.4(5)	C(28)-N(11)-C(29)	117.1(9)
C(2)-C(1)-C(5)	128.9(5)	F(8)-C(11)-F(7)	106.3(5)
N(6)-Cu(2)-N(4)	129.87(18)	F(8)-C(11)-F(9)	107.3(4)
N(6)-Cu(2)-N(7)#1	114.90(17)	F(7)-C(11)-F(9)	105.8(4)
N(4)-Cu(2)-N(7)#1	113.26(18)	F(8)-C(11)-C(6)	113.2(5)
N(6)-Cu(2)-Cu(1)	66.76(12)	F(7)-C(11)-C(6)	111.1(4)
N(4)-Cu(2)-Cu(1)	123.10(12)	F(9)-C(11)-C(6)	112.6(5)
N(7)#1-Cu(2)-Cu(1)	67.08(12)	O(4)-C(12)-O(3)	126.6(5)
C(9)-O(2)-Cu(5)#3	119.1(3)	O(4)-C(12)-C(7)	116.3(5)
C(3)-N(2)-N(1)	108.2(4)	O(3)-C(12)-C(7)	117.1(4)
C(3)-N(2)-Cu(3)	132.5(4)	N(6)-C(13)-C(14)	111.6(5)
N(1)-N(2)-Cu(3)	119.3(3)	N(6)-C(13)-C(16)	120.6(5)
C(3)-C(2)-C(1)	103.8(4)	C(14)-C(13)-C(16)	127.8(5)
C(3)-C(2)-C(9)	129.3(5)	C(13)-C(14)-C(15)	102.0(5)
C(1)-C(2)-C(9)	126.9(5)	C(13)-C(14)-C(45)	129.1(5)
N(3)-Cu(3)-N(2)	174.02(19)	C(15)-C(14)-C(45)	128.8(5)
C(12)-O(3)-Cu(4)#4	120.3(3)	N(5)-C(15)-C(14)	111.4(4)
C(6)-N(3)-N(4)	107.2(4)	N(5)-C(15)-C(17)	121.1(5)

C(6)-N(3)-Cu(3)	133.1(4)	C(14)-C(15)-C(17)	127.5(5)
N(4)-N(3)-Cu(3)	119.3(3)	F(16)-C(16)-F(17)	106.9(5)
N(2)-C(3)-C(2)	109.8(5)	F(16)-C(16)-F(18)	107.5(5)
N(2)-C(3)-C(4)	121.5(5)	F(17)-C(16)-F(18)	105.4(4)
C(2)-C(3)-C(4)	128.7(5)	F(16)-C(16)-C(13)	112.0(4)
O(8)-Cu(4)-O(6)	172.16(15)	F(17)-C(16)-C(13)	112.4(5)
O(8)-Cu(4)-O(3)#5	89.75(15)	F(18)-C(16)-C(13)	112.2(5)
O(6)-Cu(4)-O(3)#5	88.89(15)	F(14)-C(17)-F(15)	109.5(5)
O(8)-Cu(4)-O(1)#2	89.79(15)	F(14)-C(17)-F(13)	105.1(5)
O(6)-Cu(4)-O(1)#2	89.61(15)	F(15)-C(17)-F(13)	105.5(5)
O(3)#5-Cu(4)-O(1)#2	165.55(15)	F(14)-C(17)-C(15)	114.0(5)
O(8)-Cu(4)-O(7)	96.93(15)	F(15)-C(17)-C(15)	111.5(5)
O(6)-Cu(4)-O(7)	90.89(15)	F(13)-C(17)-C(15)	110.7(5)
O(3)#5-Cu(4)-O(7)	97.20(14)	O(7)-C(18)-N(9)	123.6(6)
O(1)#2-Cu(4)-O(7)	97.19(15)	N(7)-C(21)-C(22)	111.4(5)
O(8)-Cu(4)-Cu(5)#5	86.58(11)	N(7)-C(21)-C(25)	121.6(5)
O(6)-Cu(4)-Cu(5)#5	85.61(11)	C(22)-C(21)-C(25)	126.9(5)
O(3)#5-Cu(4)-Cu(5)#5	84.28(10)	C(21)-C(22)-C(23B)	103.8(10)
O(1)#2-Cu(4)-Cu(5)#5	81.28(11)	C(21)-C(22)-C(23A)	102.5(9)
O(7)-Cu(4)-Cu(5)#5	176.18(11)	C(21)-C(22)-C(24)	128.4(5)
C(12)-O(4)-Cu(5)	122.8(3)	C(23B)-C(22)-C(24)	127.7(10)
C(8)-N(4)-N(3)	108.5(4)	C(23A)-C(22)-C(24)	128.7(9)
C(8)-N(4)-Cu(2)	132.8(4)	O(8)-C(24)-O(9)	127.0(5)
N(3)-N(4)-Cu(2)	118.6(3)	O(8)-C(24)-C(22)	116.2(5)
F(5)-C(4)-F(6)	106.2(5)	O(9)-C(24)-C(22)	116.8(5)
F(5)-C(4)-F(4)	106.1(5)	F(21)-C(25)-F(19)	109.1(6)
F(6)-C(4)-F(4)	106.7(4)	F(21)-C(25)-F(20)	105.5(6)
F(5)-C(4)-C(3)	111.9(5)	F(19)-C(25)-F(20)	104.6(5)
F(6)-C(4)-C(3)	112.3(5)	F(21)-C(25)-C(21)	112.8(5)
F(4)-C(4)-C(3)	113.0(5)	F(19)-C(25)-C(21)	112.0(6)

O(4)-Cu(5)-O(2)#7	170.67(15)	F(20)-C(25)-C(21)	112.3(6)
O(4)-Cu(5)-O(9)#4	89.81(15)	O(11)-C(27)-N(11)	126.6(9)
O(2)#7-Cu(5)-O(9)#4	89.03(15)	C(38)-N(12)-C(37)	114.2(6)
O(4)-Cu(5)-O(5)#4	90.05(15)	O(10)-C(30)-N(10)	123.4(7)
O(2)#7-Cu(5)-O(5)#4	88.55(15)	O(1A)-C(42A)-N(1A)	123.2(18)
O(9)#4-Cu(5)-O(5)#4	164.15(15)	C(42A)-N(1A)-C(44A)	124(2)
O(4)-Cu(5)-O(12)	93.99(16)	C(42A)-N(1A)-C(43A)	120.0(18)
O(2)#7-Cu(5)-O(12)	95.34(17)	C(44A)-N(1A)-C(43A)	115.6(17)
O(9)#4-Cu(5)-O(12)	96.65(18)	O(1A)-C(42B)-N(1B)	124.3(16)
O(5)#4-Cu(5)-O(12)	99.18(18)	C(42B)-N(1B)-C(44B)	119.8(15)
O(4)-Cu(5)-Cu(4)#4	83.83(11)	C(42B)-N(1B)-C(43B)	125.4(19)
O(2)#7-Cu(5)-Cu(4)#4	86.84(11)	C(44B)-N(1B)-C(43B)	114.5(15)
O(9)#4-Cu(5)-Cu(4)#4	81.45(11)	O(12)-C(36)-N(13A)	126.1(9)
O(5)#4-Cu(5)-Cu(4)#4	82.78(11)	F(22)-C(50B)-F(23A)	99.7(9)
O(12)-Cu(5)-Cu(4)#4	177.09(14)	F(22)-C(50B)-F(24B)	104.1(9)
C(15)-N(5)-N(6)	107.6(4)	F(23A)-C(50B)-F(24B)	106.4(11)
C(15)-N(5)-Cu(1)	138.3(4)	F(22)-C(50B)-C(23B)	114.1(12)
N(6)-N(5)-Cu(1)	114.0(3)	F(23A)-C(50B)-C(23B)	117.3(12)
F(3)-C(5)-F(2)	106.6(4)	F(24B)-C(50B)-C(23B)	113.5(12)
F(3)-C(5)-F(1)	107.2(4)	N(8)-C(23B)-C(22)	109.1(14)
F(2)-C(5)-F(1)	106.2(5)	N(8)-C(23B)-C(50B)	119.4(15)
F(3)-C(5)-C(1)	112.1(5)	C(22)-C(23B)-C(50B)	131.4(16)
F(2)-C(5)-C(1)	111.2(4)	C(1AA)-N(0AA)-C(1AA)#6	180(5)
F(1)-C(5)-C(1)	113.0(5)	C(1AA)-N(0AA)-C(3AA)#6	89(3)
C(45)-O(6)-Cu(4)	120.6(3)	C(1AA)#6-N(0AA)-C(3AA)#6	91(3)
C(13)-N(6)-N(5)	107.4(4)	C(1AA)-N(0AA)-C(3AA)	91(3)
C(13)-N(6)-Cu(2)	139.7(4)	C(1AA)#6-N(0AA)-C(3AA)	89(3)
N(5)-N(6)-Cu(2)	112.6(3)	C(3AA)#6-N(0AA)-C(3AA)	180.000(12)
N(3)-C(6)-C(7)	111.2(5)	N(0AA)-C(1AA)-O(2AA)	94(5)
N(3)-C(6)-C(11)	121.2(4)	C(1AA)-O(2AA)-C(3AA)	87(4)

C(7)-C(6)-C(11)	127.6(5)	N(0AA)-C(3AA)-O(2AA)	87(3)
C(18)-O(7)-Cu(4)	117.9(4)	F(23B)-C(50A)-F(24A)	104.8(12)
C(21)-N(7)-N(8)	107.0(4)	F(23B)-C(50A)-F(22)	113.1(10)
C(21)-N(7)-Cu(2)#8	138.6(4)	F(24A)-C(50A)-F(22)	108.8(9)
N(8)-N(7)-Cu(2)#8	111.7(3)	F(23B)-C(50A)-C(23A)	114.0(11)
C(6)-C(7)-C(8)	102.7(4)	F(24A)-C(50A)-C(23A)	107.5(11)
C(6)-C(7)-C(12)	129.6(5)	F(22)-C(50A)-C(23A)	108.3(12)
C(8)-C(7)-C(12)	127.6(5)	N(8)-C(23A)-C(22)	110.7(14)
C(24)-O(8)-Cu(4)	119.6(3)	N(8)-C(23A)-C(50A)	123.9(14)
C(23A)-N(8)-N(7)	107.7(9)	C(22)-C(23A)-C(50A)	125.2(14)
N(7)-N(8)-C(23B)	107.9(9)	C(36)-O(12)-Cu(5)	126.3(6)
C(23A)-N(8)-Cu(1)#8	133.2(9)	C(36B)-O(12)-Cu(5)	108.6(17)
N(7)-N(8)-Cu(1)#8	113.8(3)	C(36)-N(13A)-C(34)	117.1(9)
N(4)-C(8)-C(7)	110.5(4)	C(36)-N(13A)-C(33)	121.3(11)
N(4)-C(8)-C(10)	119.9(4)	C(34)-N(13A)-C(33)	121.2(12)
C(7)-C(8)-C(10)	129.6(4)	O(12)-C(36B)-N(13B)	134(3)
C(24)-O(9)-Cu(5)#5	123.1(3)	C(36B)-N(13B)-C(33B)	133(3)
C(18)-N(9)-C(20)	121.0(6)	C(36B)-N(13B)-C(34B)	126(4)
C(18)-N(9)-C(19)	121.0(6)	C(33B)-N(13B)-C(34B)	98(3)
C(20)-N(9)-C(19)	117.9(6)	O(5)-C(45)-O(6)	127.7(5)
O(1)-C(9)-O(2)	126.8(5)	O(5)-C(45)-C(14)	117.4(5)
O(1)-C(9)-C(2)	116.8(5)	O(6)-C(45)-C(14)	115.0(5)
O(2)-C(9)-C(2)	116.3(5)		

TableS6Anisotropicatomicdisplacementparameters $(Å^2x10^3)$ for $(Me_2NH_2)[Cu^I_3Cu^{II}_2(tfpc)_4 \cdot 3DMF] \cdot 2.25DMF$ The anisotropic atomic displacement factor exponenttakes the form: $-2\pi^2[h^2 (a^*)^2 U^{11} + ... + 2 h k a^* b^* U^{12}]$

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cu(1)	12(1)	17(1)	11(1)	3(1)	3(1)	-1(1)
F(1)	44(2)	23(2)	22(2)	-2(2)	13(2)	4(2)
O(1)	16(2)	19(2)	12(2)	3(2)	5(2)	-3(2)
N(1)	18(2)	17(2)	13(2)	-1(2)	6(2)	0(2)
C(1)	8(3)	17(3)	12(3)	4(2)	2(2)	3(2)
Cu(2)	11(1)	14(1)	12(1)	-1(1)	3(1)	2(1)
F(2)	43(2)	25(2)	30(2)	14(2)	25(2)	14(2)
O(2)	14(2)	19(2)	17(2)	1(2)	7(2)	-3(2)
N(2)	15(2)	17(2)	17(2)	3(2)	6(2)	0(2)
C(2)	9(3)	22(3)	12(3)	4(2)	3(2)	-1(2)
Cu(3)	15(1)	18(1)	15(1)	3(1)	10(1)	2(1)
F(3)	13(2)	51(2)	38(2)	12(2)	11(2)	12(2)
O(3)	14(2)	15(2)	14(2)	-4(2)	4(2)	-2(2)
N(3)	16(2)	16(2)	13(2)	1(2)	7(2)	-1(2)
C(3)	17(3)	22(3)	16(3)	0(2)	5(2)	-3(2)
Cu(4)	8(1)	13(1)	9(1)	2(1)	2(1)	0(1)
F(4)	30(2)	25(2)	32(2)	13(2)	12(2)	8(2)
O(4)	19(2)	12(2)	21(2)	-2(2)	10(2)	2(2)
N(4)	16(2)	8(2)	15(2)	2(2)	5(2)	2(2)
C(4)	26(3)	25(3)	23(3)	3(3)	18(3)	-2(3)
Cu(5)	11(1)	13(1)	10(1)	-1(1)	5(1)	0(1)
F(5)	44(2)	27(2)	63(3)	10(2)	40(2)	11(2)
O(5)	19(2)	19(2)	19(2)	-1(2)	-1(2)	0(2)
N(5)	13(2)	18(2)	8(2)	2(2)	1(2)	0(2)
C(5)	26(3)	22(3)	16(3)	8(2)	12(2)	7(3)
F(6)	58(3)	24(2)	33(2)	-6(2)	6(2)	-8(2)
O(6)	17(2)	15(2)	17(2)	4(2)	0(2)	0(2)
N(6)	14(2)	18(2)	12(2)	-1(2)	0(2)	-1(2)
C(6)	13(3)	15(3)	16(3)	-1(2)	6(2)	2(2)
F(7)	51(2)	31(2)	40(2)	18(2)	36(2)	15(2)
O(7)	15(2)	18(2)	27(2)	-6(2)	4(2)	4(2)
N(7)	11(2)	20(2)	12(2)	0(2)	2(2)	-2(2)
C(7)	10(3)	15(3)	11(3)	-4(2)	0(2)	-4(2)
F(8)	33(2)	35(2)	34(2)	18(2)	14(2)	17(2)
O(8)	15(2)	23(2)	12(2)	0(2)	1(2)	5(2)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(8)	10(2)	24(3)	13(2)	-1(2)	3(2)	3(2)
C(8)	11(3)	14(3)	11(3)	-5(2)	7(2)	-4(2)
F(9)	38(2)	16(2)	55(3)	0(2)	20(2)	-4(2)
O(9)	16(2)	21(2)	15(2)	2(2)	1(2)	6(2)
N(9)	32(3)	28(3)	71(5)	2(3)	10(3)	14(3)
C(9)	10(3)	22(3)	10(3)	9(2)	-1(2)	4(2)
F(10)	14(2)	21(2)	29(2)	0(1)	7(1)	-5(1)
O(10)	62(4)	39(3)	57(4)	-1(3)	-24(3)	-1(3)
N(10)	76(5)	44(4)	37(4)	2(3)	-11(3)	15(3)
C(10)	22(3)	16(3)	17(3)	3(2)	6(2)	-2(2)
F(11)	32(2)	34(2)	9(2)	2(1)	3(1)	-2(2)
O(11)	54(3)	61(4)	47(3)	19(3)	-11(3)	-9(3)
N(11)	35(4)	73(5)	60(5)	-4(4)	-11(3)	14(3)
C(11)	22(3)	24(3)	29(3)	3(3)	21(3)	5(3)
F(12)	23(2)	15(2)	32(2)	5(1)	13(2)	8(1)
C(12)	8(3)	18(3)	11(3)	2(2)	-2(2)	-3(2)
F(13)	32(2)	53(2)	34(2)	16(2)	14(2)	-8(2)
C(13)	13(3)	20(3)	16(3)	-1(2)	-1(2)	-5(2)
F(14)	38(2)	48(2)	45(2)	-11(2)	23(2)	2(2)
C(14)	13(3)	19(3)	12(3)	-3(2)	-1(2)	-4(2)
F(15)	10(2)	132(4)	23(2)	15(2)	1(2)	3(2)
C(15)	12(3)	20(3)	14(3)	2(2)	-3(2)	-4(2)
F(16)	20(2)	116(4)	16(2)	20(2)	-1(2)	1(2)
C(16)	12(3)	35(3)	18(3)	3(3)	3(2)	0(3)
F(17)	18(2)	48(2)	25(2)	6(2)	6(1)	-8(2)
C(17)	12(3)	39(4)	17(3)	9(3)	-1(2)	-2(3)
F(18)	54(3)	46(2)	38(2)	-16(2)	28(2)	-4(2)
C(18)	31(4)	23(3)	30(4)	1(3)	0(3)	0(3)
F(19)	11(2)	100(4)	49(3)	35(3)	6(2)	-1(2)
C(19)	42(5)	54(6)	120(9)	-9(5)	20(5)	21(4)
F(20)	57(3)	84(3)	50(3)	11(2)	26(2)	51(3)
C(20)	77(7)	29(4)	115(9)	5(5)	36(6)	8(4)
F(21)	28(2)	104(4)	30(2)	40(2)	18(2)	28(2)
C(21)	16(3)	23(3)	19(3)	7(2)	6(2)	2(2)
F(22)	37(2)	55(2)	17(2)	14(2)	5(2)	-9(2)
C(22)	13(3)	10(3)	18(3)	2(2)	1(2)	0(2)
C(24)	7(3)	23(3)	8(3)	4(2)	4(2)	-6(2)
C(25)	17(3)	75(5)	24(4) S25	24(4)	5(3)	12(3)

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
F(23A)	52(8)	47(7)	36(6)	3(5)	19(6)	13(6)
F(23B)	46(7)	26(5)	18(4)	-11(4)	18(4)	3(4)
C(27)	51(6)	89(7)	83(8)	21(6)	-5(5)	1(5)
N(12)	79(5)	28(3)	71(5)	0(3)	-32(4)	-8(3)
C(28)	120(10)	75(8)	125(11)	32(7)	-30(8)	0(7)
C(30)	44(4)	38(4)	39(4)	3(3)	3(4)	3(3)
C(29)	132(12)	170(15)	147(13)	36(11)	90(11)	48(11)
O(1A)	105(6)	42(3)	105(6)	-3(4)	-44(4)	-3(3)
C(42A)	94(15)	42(8)	94(16)	-7(9)	-23(11)	-19(8)
C(43A)	91(19)	49(11)	170(30)	-6(15)	35(16)	-7(11)
N(1A)	63(11)	38(7)	68(13)	7(8)	-19(9)	-9(7)
C(44A)	53(16)	38(14)	310(50)	-33(19)	60(20)	-23(12)
C(42B)	86(13)	30(7)	67(12)	-11(7)	-37(9)	15(7)
N(1B)	38(9)	32(6)	48(9)	-13(6)	-21(7)	0(6)
C(43B)	90(20)	29(12)	180(30)	-17(17)	68(19)	-18(13)
C(44B)	51(11)	38(8)	94(15)	-13(8)	-7(9)	-13(8)
C(34)	230(20)	49(8)	164(17)	46(10)	106(16)	65(11)
C(36)	69(8)	32(6)	79(8)	12(5)	33(7)	19(5)
F(24A)	6(4)	85(7)	16(4)	15(5)	3(3)	2(5)
F(24B)	31(5)	95(8)	34(5)	28(6)	-2(4)	-34(6)
O(12)	43(3)	22(2)	54(3)	18(2)	22(3)	-2(2)
N(13A)	116(9)	42(6)	160(13)	33(7)	95(9)	14(6)
C(33)	200(30)	117(16)	320(30)	90(20)	190(30)	3(17)
C(38)	92(7)	42(5)	54(5)	-9(4)	-18(5)	-13(5)
C(37)	55(5)	49(5)	85(7)	-28(5)	-23(5)	2(4)
C(31)	105(8)	50(6)	90(8)	35(5)	28(6)	19(5)
C(32)	169(12)	114(9)	59(7)	-29(7)	-69(8)	53(9)
C(45)	9(3)	25(3)	11(3)	2(2)	1(2)	-3(2)
Cu(1)	12(1)	17(1)	11(1)	3(1)	3(1)	-1(1)
F(1)	44(2)	23(2)	22(2)	-2(2)	13(2)	4(2)
O(1)	16(2)	19(2)	12(2)	3(2)	5(2)	-3(2)
N(1)	18(2)	17(2)	13(2)	-1(2)	6(2)	0(2)
C(1)	8(3)	17(3)	12(3)	4(2)	2(2)	3(2)
Cu(2)	11(1)	14(1)	12(1)	-1(1)	3(1)	2(1)