Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Chemosensor for micro to nano-molar detection of Ag⁺ and Hg²⁺ ions in pure aqueous media and its applications in cell imaging

Jitendra P. Nandre^a, Samadhan R. Patil^a, Suban K. Sahoo^c, Chullikkattil P. Pradeep^d, Andrei Churakov^e, Fabiao Yu^f, Lingxin Chen*^f, Carl Redshaw^g, Ashok A. Patil^{a*}, Umesh D. Patil*^b

^aDepartment of Chemistry, Z. B. Patil College, Deopur, Dhule - 424 002 (MS), India.

^bDepartment of Chemistry, S.S.V.P.S's L. K. Dr. P. R. Ghogrey Science College, Dhule-424 001 (MS), India.

^cDepartment of Applied Chemistry, S. V. National Institute Technology, Surat-395007, Gujrat, India.

^dSchool of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175001, India.

^eInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow

119991, Russian Federation.

^f Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China

^gDepartment of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX (UK).

Table of Contents

Figure S-1	: FT-IR spectrum of sensor PTB-1.
Figure S-2	: ¹ H-NMR spectrum of sensor PTB-1
Figure S-3	: ¹³ C-NMR spectrum of sensor PTB-1
Figure S-4	: HRMS spectrum of sensor PTB-1
Figure S-5	: Concentration dependent naked-eye study
Figure S-6	: Linear fitting curve for LOD and LOQ determination of PTB-1 for Ag ⁺
Figure S-7	: Mole ratio plot/change in absorption spectra (ΔA) as a function of concentration of Ag^+ ions
Figure S-8	: Mass spectrum of PTB-1 in the presence of Ag ⁺
Figure S-9	: Benesi-Hildebrand plot of 1/ ΔA against 1 / [Ag ⁺]
Figure S-10	: Job's plot for complexation of PTB-1 with Hg ²⁺ ion
Figure S-11	: Mole ratio plot/change in emission spectra (ΔF) as a function of concentration of Hg^{2+} ion
Figure S-12	: Mass spectrum of PTB-1 in the presence of Hg ²⁺
Figure S-13	: Benesi-Hildebrand plot of 1/ ΔF against 1 / [Hg ²⁺]
Figure S-14	: Plots of the fluorescence intensity of PTB-1 vs. the increasing concentration of Hg^{2+} and Ag^{+} .
Figure S-15	: Selectivity and reversibility measurement of PTB-1 to Hg^{2+} and Ag^{+} .
Figure S-16	: The DFT computed molecular structure of PTB-1 and its complexes.
Figure S-17	: Partial ¹ H NMR spectra of receptor PTB-1 in the presence of HgCl ₂
Figure S-18	: Partial ¹ H NMR spectra of receptor PTB-1 in the presence of AgNO ₃
Figure S-19	: FT-IR overlap spectra of PTB-1 and PTB-1+Hg ²⁺ complex
Figure S-20	: Photographs of PTB-1 loaded test strips with varying concentration of Ag ⁺
Figure S-21	: Fluorescence stability of PTB-1
Figure S-22	: MTT assay of HepG2 cells with different concentrations of PTB-1.
Figure S-23	: Hydrogen-bonded centrosymmetric dimers in the structure of PTB-1.

: Comparison of PTB-1 with previously reported sensors

Table S-1

Experimental Section

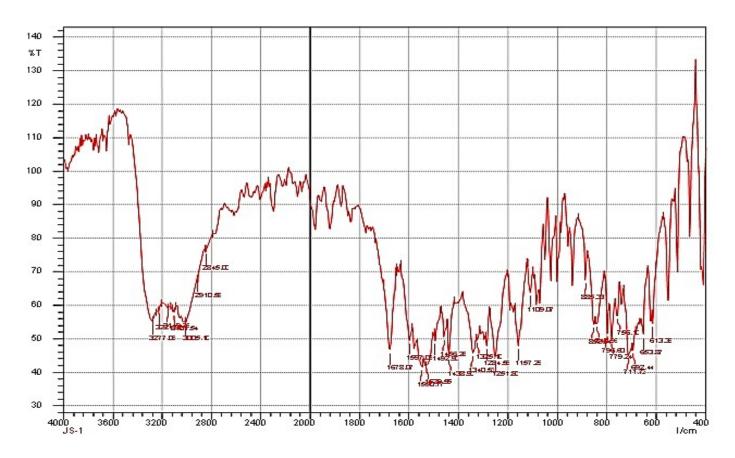


Figure S-1: FT-IR spectrum of sensor PTB-1.

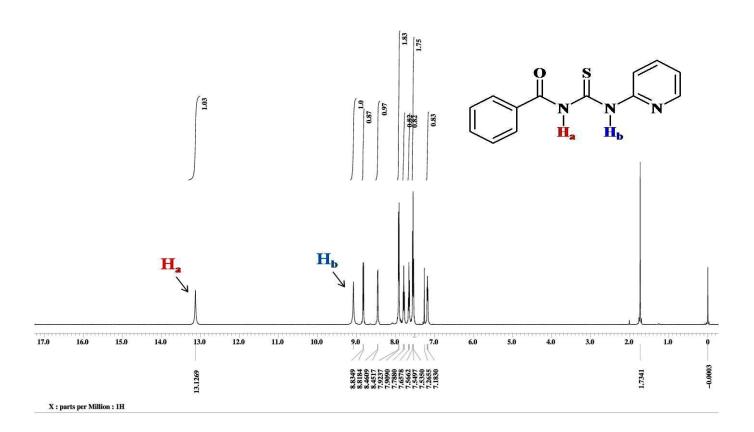


Figure S-2: ¹H-NMR spectrum of sensor PTB-1.

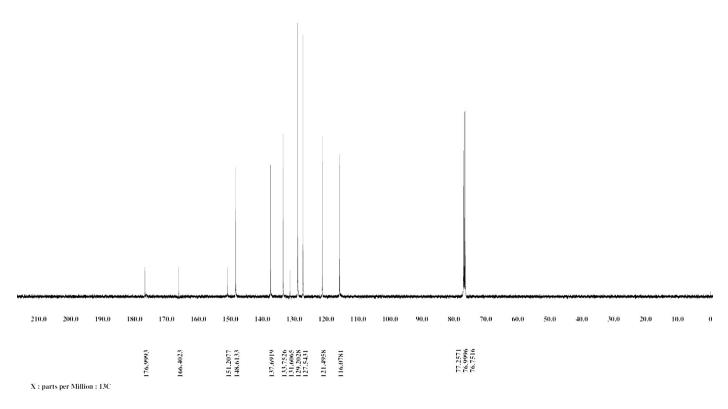


Figure S-3: ¹³C-NMR spectrum of sensor PTB-1

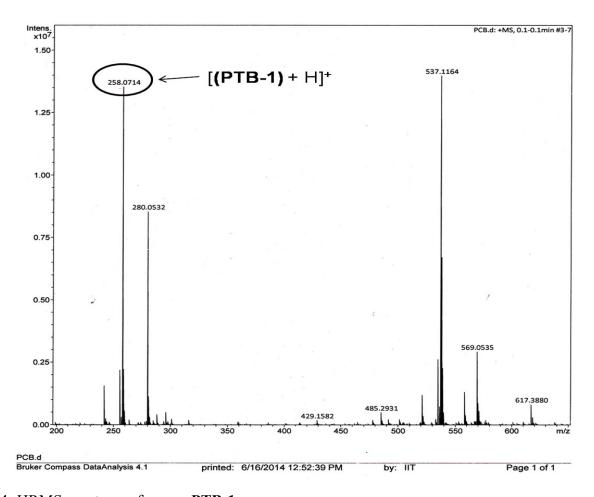


Figure S-4: HRMS spectrum of sensor PTB-1.

Figure S-5: Concentration dependent naked-eye study; 2 equivalents of Ag^+ ions of concentrations (**A**) Ag^+ (5 x 10^{-3} M); (**B**) Ag^+ (1 x 10^{-3} M); (**C**) Ag^+ (5 x 10^{-4} M); (**D**) Ag^+ (1 x 10^{-4} M); (**E**) Ag^+ (1 x 10^{-5} M) in the presence of 1 equivalent of **PTB-1** (5 x 10^{-3} M).

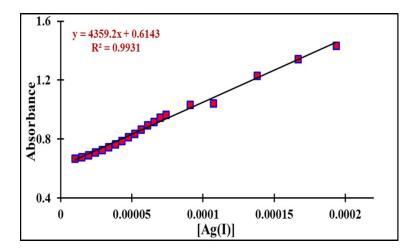
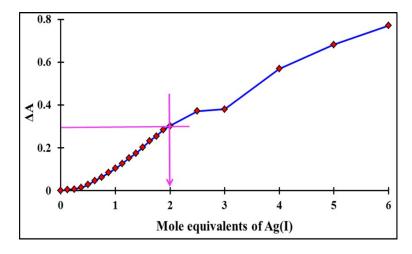



Figure S-6: Linear fitting curve for LOD and LOQ determination of PTB-1 for Ag⁺.

Figure S-7: Mole ratio plot/change in absorption spectra (ΔA) as a function of concentration of Ag^+ ions.

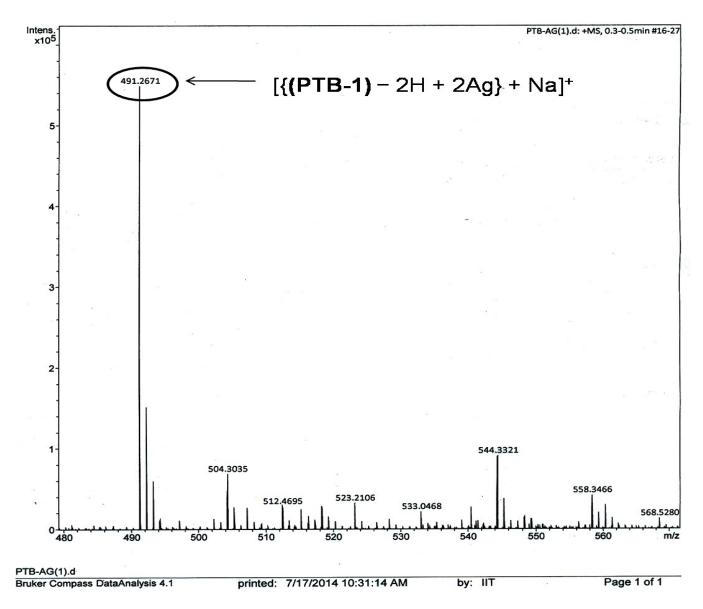
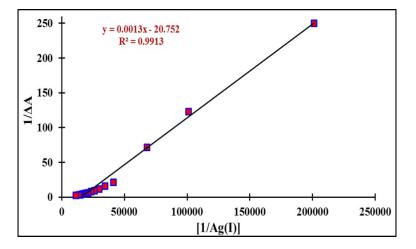



Figure S-8: Mass spectrum of PTB-1 in the presence of Ag⁺.

Figure S-9: Benesi-Hildebrand plot of $1/\Delta A$ against $1/[Ag^+]$.

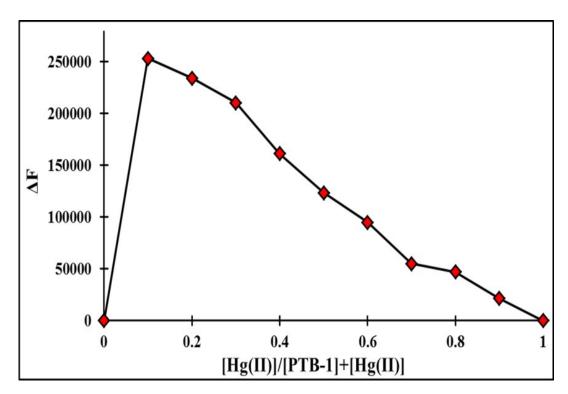
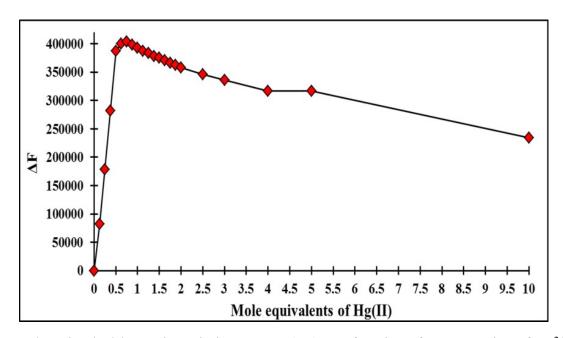



Figure S-10: Job's plot for the determination of the 2:1 stoichiometry for complexation of PTB-1 with Hg²⁺ ion.

Figure S-11: Mole ratio plot/change in emission spectra (ΔF) as a function of concentration of Hg²⁺ ion.

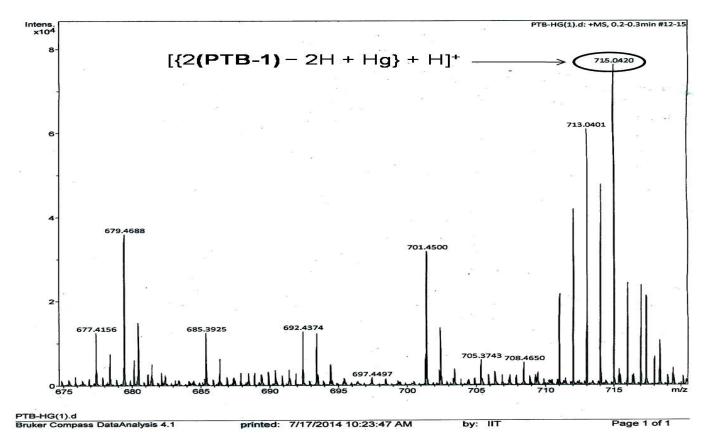
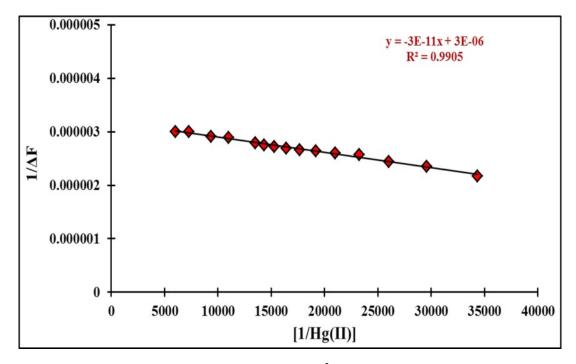
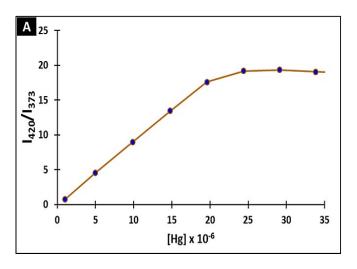
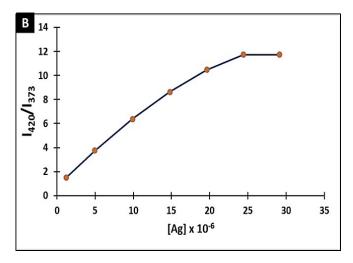
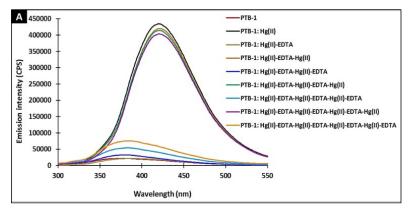
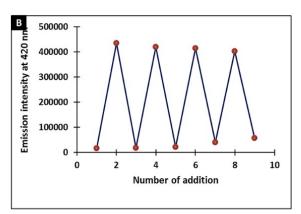





Figure S-12: Mass spectrum of PTB-1 in the presence of Hg²⁺.




Figure S-13: Benesi-Hildebrand plot of $1/\Delta F$ against $1/[Hg^{2+}]$.

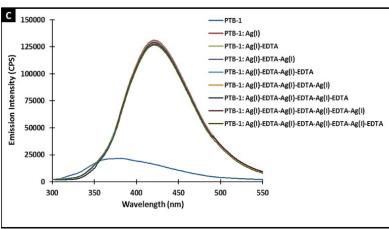


Figure S14: Plots of the fluorescence intensity of PTB-1 vs. the increasing concentration of (A) Hg^{2+} and (B) Ag^{+} .

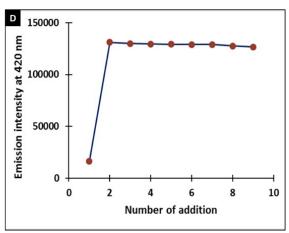
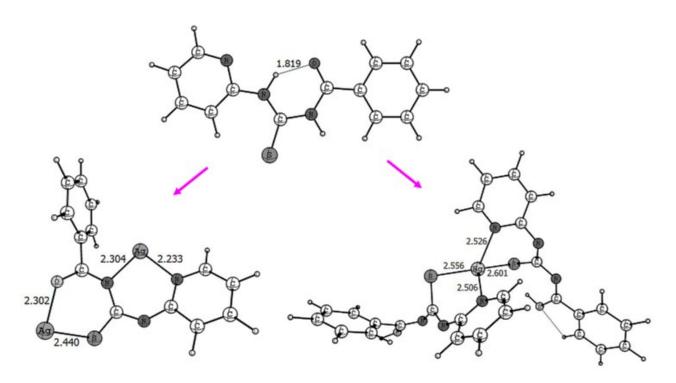
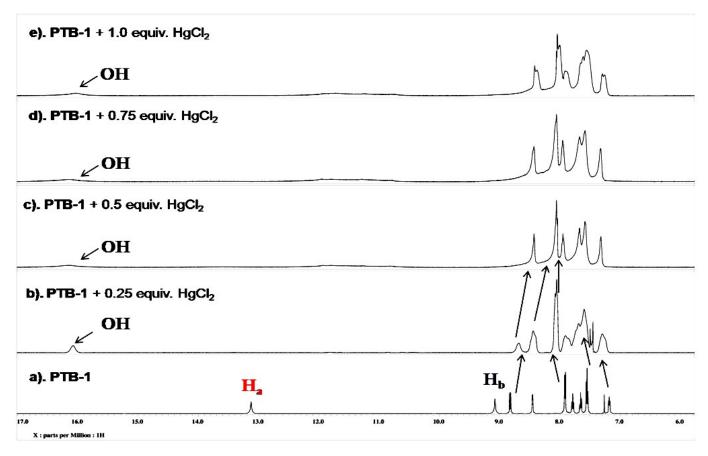




Figure S15: Selectivity and reversibility measurement of PTB-1 to Hg²⁺ and Ag⁺.

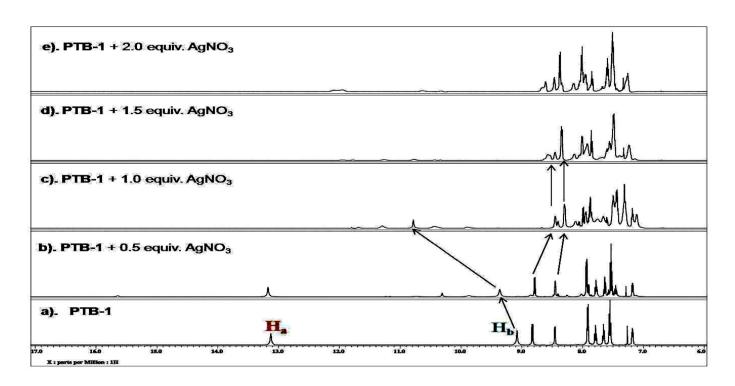

Changes in fluorescence emission intensity of PTB-1 [2 mL, 4 x 10^{-5} M, in CH₃OH:H₂O (20:80, v/v)] upon the sequential addition of (A, B) Hg²⁺ and EDTA; (C, D) Ag⁺ and EDTA at $\lambda_{ex} = 290$ nm.

Figure S16: The DFT computed molecular structure of **PTB-1** and its **PTB-1.**(Ag^+)₂ and (**PTB-1**)₂. Hg^{2+} complexes.

Figure S-17: Partial ¹H NMR spectra (aromatic region) of receptor **PTB-1** (a), **PTB-1** in the presence of 0.25 equiv. HgCl₂ (b), 0.5 equiv. HgCl₂ (c) and 1.0 equiv. HgCl₂ (d) taken in CDCl₃.

Figure S-18: Partial ¹H NMR spectra of receptor **PTB-1** (a), **PTB-1** in the presence of 0.5 equiv. AgNO₃ (b), 1.0 equiv. AgNO₃ (c), 1.5 equiv. AgNO₃ (d) and 2.0 equiv. AgNO₃ (e) taken in CDCl₃.

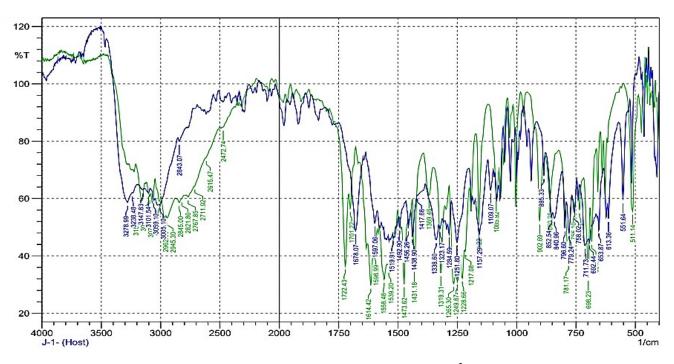
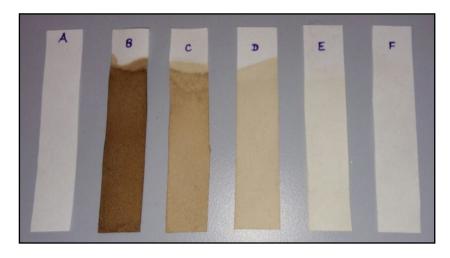


Figure S-19: FT-IR overlap spectra of PTB-1 (blue color) and PTB-1+Hg²⁺ complex (green color).



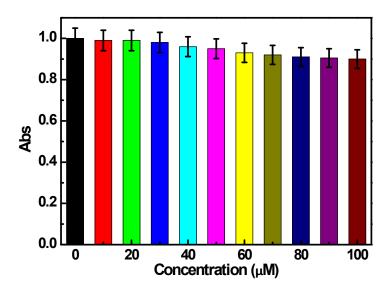


Figure 20: Photographs of PTB-1 loaded test strips with varying concentration of Ag⁺

 $A = PTB-1 \ (1x10^{-2}\ M) \ loaded \ test \ strip \ and \ [Ag^+]: B = 1\ x\ 10^{-4}\ M, \ C = 5\ x\ 10^{-5}\ M, \ D = 1\ x\ 10^{-5}\ M, \ E = 5\ x\ 10^{-6}\ M, \ F = 1\ x\ 10^{-6}\ M$

Figure S21: Fluorescence stability of PTB-1 [(2 mL, 4 x 10^{-5} M) in CH₃OH:H₂O (20:80, v/v)] upon 0 - 3 h. λ_{ex} = 290 nm, λ_{em} = 420 nm. The data were shown as mean (± s.d.) (n = 7).

Figure S22: MTT assay of HepG2 cells with different concentrations of PTB-1. The data were shown as mean $(\pm \text{ s.d.})$ (n = 7).

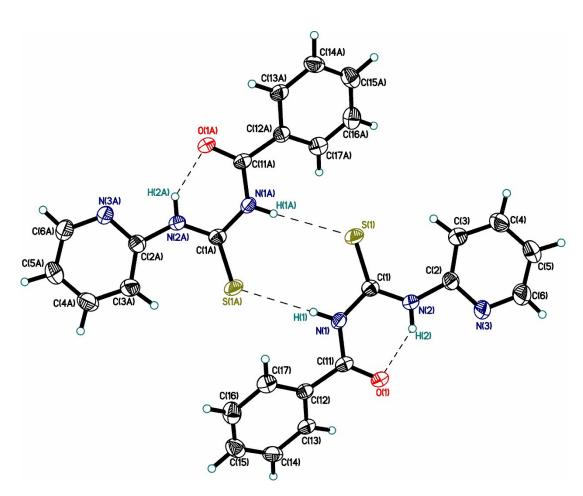


Figure S-23: Hydrogen-bonded centrosymmetric dimers in the structure of PTB-1.

Table S-1 Comparison of **PTB-1** with previously reported sensors.

Research Group	Selectivity for	Solvent for analysis	Detection limit	Application
Patil, U.D. et. al. (This paper)	Ag ⁺ and Hg ²⁺	Methanol:water (20:80)	For Ag ⁺ : 3.67 x 10 ⁻⁶ M For Hg ²⁺ : 0.69 x 10 ⁻⁹ M	Cell Imaging, Paper Strips, Supported Silica
Fu, Y. et. al.	Only Ag ⁺	THF:water (80:20)	2.92 x 10 ⁻⁷ M and 6.5 x 10 ⁻⁷ M	
Hatai, J. et. al.	Only Hg ²⁺	Methanol:water (80:20)	1.03 x 10 ⁻⁷ M	
Hatai, J. et. al.	Only Ag ⁺	DMSO:water (1:99)	1.0 x 10 ⁻⁷ M	Cell Imaging, Paper Strips
Hu, Z.Q. et. al.	Only Hg ²⁺	Ethanol:water (11:89)	4.2 x 10 ⁻⁸ M	Cell Imaging
Mahapatra, A.K. et. al.	Only Hg ²⁺	Acetonitrile:water (20:80)	4.0 x 10 ⁻⁷ M	Cell Imaging
Tang, B. et. al.	Only Hg ²⁺	Acetonitrile	1.39 x 10 ⁻⁸ M	Cell Imaging
Vedamalai, M. et. al.	Only Hg ²⁺	Acetonitrile:water (90:10)	0.226 x 10 ⁻⁶ M	Cell Imaging
Wang, Y. et. al.	Only Ag ⁺	Ethanol:water (10:90)	2.79x10 ⁻⁷ M	
Xiang, G. et. al.	Only Ag ⁺	THF	5 x 10 ⁻⁸ M	
Ye, J.H. et. al.	Only Ag ⁺	THF:water (33:66)	0.2 x 10 ⁻⁶ M	
Zhang, D. et. al.	Only Hg ²⁺	Ethanol:water (50:50)	0.067 x 10 ⁻⁶ M	Cell Imaging
Zheng, H. et. al.	Only Ag ⁺	Methanol:water (20:80)	34 x 10 ⁻⁹ M	

References

Fu, Y., Mu, L., Zeng, X., Zhao, J.L., Redshaw, C., Ni, X.L., Yamato, T., 2013. J. Chem. Soc., Dalton Trans. 42, 3552-3560.

Hatai, J., Pal, S., Bandyopadhyay, S., 2012. RSC Adv. 2, 10941-10947.

Hatai, J., Pal, S., Jose, G.P., Bandyopadhyay, S., 2012. Inorg. Chem. 51, 10129-10135.

Hu, Z.Q., Zhuang, W.M., Li, M., Liu, M.D., Wen, L.R., Li, C.Z., 2013. Dyes Pigments 98, 286-289.

Mahapatra, A.K., Maji, R., Sahoo, P., Nandi, P.K., Mukhopadhyay, S.K., Banik, A., 2012. Tetrahedron Lett. 53, 7031-7035.

Tang, B., Cui, L.J., Xu, K.H., Tong, L.L., Yang, G.W., An, L.G., 2008. ChemBioChem 9, 1159-1164.

Vedamalai, M., Wu, S.P., 2012. Org. Biomol. Chem.10, 5410-5416.

Wang, Y., Geng, F., Xu, H., Qu, P., Zhou, X., Xu, M., 2012. J. Fluoresc. 22, 925-929.

Xiang, G., Cui, W., Lin, S., Wang, L., Meier, H., Li, L., Cao, D., 2013. Sens. Actuators, B 186, 741-749.

Ye, J.H., Duan, L., Yan, C., Zhang, W., He, W., 2012. Tetrahedron Lett. 53, 593-596.

Zhang, D., Li, M., Jiang, Y., Wang, C., Wang, Z., Ye, Y., Zhao, Y., 2013. Dyes Pigments 99, 607-612.

 $Zheng, H., Yan, M., Fan, X.X., Sun, D., Yang, S.Y., Yang, L.J., Li, J.D., Jiang, Y.B., 2012. \ J. \ Chem. \ Soc., Chem. \ Soc.$

Commun. 48, 2243-2245.