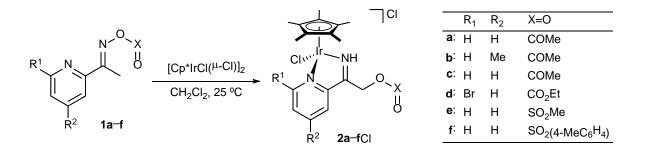
Electronic Supplementary Information

Direct transformation of 2-acetylpyridine oxime esters into α -oxygenated imines in an Ir(III) complex

Hiroyuki Takahashi, Shintaro Kodama,* and Youichi Ishii*

Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan


Contents

General considerations	S2
Transformation of 1 into 2	S2
Synthesis of 2aBF4	S4
Synthesis of 4Cl	S5
Fig. S1. ESI-MS spectrum (positive ion mode) for the reaction mixture in Scheme 3 (A crossover experiment).	S6
X-ray diffraction studies	S7
Table S1. X-ray crystallographic data for 2aBF4 and 4Cl.	S 8
Fig. S2. ¹ H NMR (CD ₂ Cl ₂) spectrum of 2aCl.	S9
Fig. S3. ¹ H NMR (CDCl ₃) spectrum of 2bCl.	S10
Fig. S4. ¹ H NMR (CDCl ₃) spectrum of 2dCl.	S 11
Fig. S5. ¹ H NMR (CDCl ₃) spectrum of 2eCl.	S 12
Fig. S6. ¹ H NMR (CDCl ₃) spectrum of 2fCl.	S 13
Fig. S7. ¹ H NMR (CD ₂ Cl ₂) spectrum of 2aBF4.	S 14
Fig. S8. ¹ H NMR (CDCl ₃) spectrum of 4Cl.	S15
Fig. S9. Full ¹ H NMR (CD ₂ Cl ₂ -D ₂ O) spectrum of 4Cl.	S16
Fig. S10. Full ¹ H NMR (CD ₂ Cl ₂ -D ₂ O-NEt ₃) spectrum of 4Cl-d ₃ .	S16
References	S17

General considerations

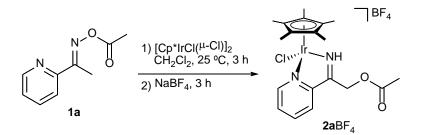
All experimental manipulations for air and water sensitive reagents were carried out in dried glass vessels under an argon or a nitrogen atmosphere by standard Schlenk techniques. Dichloromethane was distilled over P₄O₁₀; methanol was distilled over Mg. They were degassed and stored under an argon atmosphere. The other solvents (anhydrous grade) were purchased from Sigma-Aldrich and purged with argon before use. ¹H (500 MHz) and ¹³C{¹H} (126 MHz) NMR spectra were recorded on a JEOL ECA-500 spectrometer. Chemical shifts are reported in δ, referenced to residual ¹H and ¹³C signals of deuterated solvents as internal standards. IR spectra were recorded on a JASCO FT/IR-4200 spectrometer using KBr pellets. Elemental analyses were performed on a Perkin Elmer 2400 series II CHN analyzer.

Transformation of 1 into 2

General procedure

A mixture of $[Cp*IrCl(\mu-Cl)]_2$ and oxime ester **1** in dichloromethane was stirred at 25 °C for an appropriate reaction time (3–6 h). After the completion of the reaction, the mixture was filtered through a Celite pad, and the filtrate was concentrated in vacuo. The crude product was purified by recrystallization from dichloromethane–hexane or dichloromethane–methanol–diethyl ether to give **2**Cl.

Synthesis of 2aCl: This compound was obtained from $[Cp*IrCl(\mu-Cl)]_2$ (31.9 mg, 0.040 mmol) and oxime acetate **1a** (14.4 mg, 0.081 mmol) according to *general procedure*. The reaction time was 3 h. The product was purified by recrystallization from dichloromethane–hexane. Dark red crystals (38.2 mg, 83% yield). ¹H NMR (CD₂Cl₂) δ 15.7 (br s, 1H), 8.78 (d, *J* = 6.0 Hz, 1H), 8.06 (m, 2H), 7.73 (m, 1H), 5.88 (d, *J* = 14 Hz, 1H), 5.61 (d, *J* = 14 Hz, 1H), 2.13 (s, 3H), 1.89 (s, 15H); ¹³C{¹H} NMR (CD₂Cl₂) δ 174.4, 170.3, 155.5, 151.8, 140.1, 129.7, 127.7, 90.8, 61.9, 21.0, 9.49; IR (KBr, cm⁻¹) 1750 (v_{C=0}), 1598 (v_{C=N}), 1235 (v_{C-0}); Anal. Calcd for C₁₉H₂₅Cl₂IrN₂O₂: C, 39.58; H, 4.37; N, 4.86. Found: C, 39.33; H, 4.45; N, 4.72.

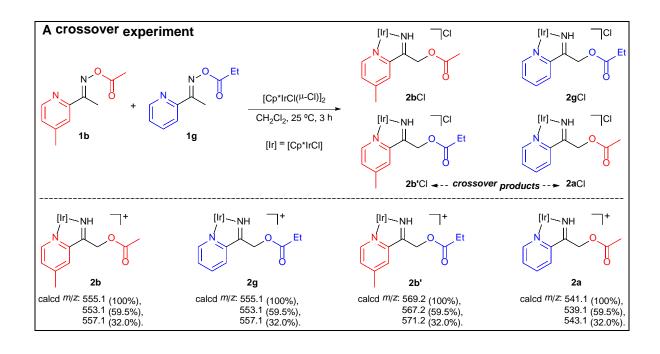

Synthesis of 2bCl: This compound was obtained from $[Cp*IrCl(\mu-Cl)]_2$ (59.6 mg, 0.075 mmol) and oxime acetate **1b** (39.4 mg, 0.205 mmol) according to *general procedure*. The reaction time was 3 h. The product was purified by recrystallization from dichloromethane–methanol–diethyl ether. Dark red crystals (43.6 mg, 49% yield). ¹H NMR (CDCl₃) δ 15.2 (br s, 1H), 8.63 (d, *J* = 6.0 Hz, 1H), 7.82 (s, 1H), 7.57 (dd, *J* = 6.0, 1.0 Hz, 1H), 5.88 (d, *J* = 14 Hz, 1H), 5.61 (d, *J* = 14 Hz, 1H), 2.63 (s, 3H), 2.12 (s, 3H), 1.90 (s, 15H); ¹³C{¹H} NMR (CDCl₃) δ 174.4, 170.1, 154.9, 152.7, 150.8, 130.3, 128.2, 90.3, 61.5, 21.7, 21.0, 9.53; IR (KBr, cm⁻¹) 1749 (v_{C=0}), 1622 (v_{C=N}), 1225 (v_{C=0}); Anal. Calcd for C₂₀H₂₇Cl₂IrN₂O₂: C, 40.68; H, 4.61; N, 4.74. Found: C, 40.44; H, 4.59; N, 4.61.

Synthesis of 2dCl: This compound was obtained from $[Cp*IrCl(\mu-Cl)]_2$ (15.8 mg, 0.020 mmol) and oxime carbonate **1d** (9.6 mg, 0.046 mmol) according to *general procedure*. The reaction time was 3 h. The product was purified by recrystallization from dichloromethane–methanol–diethyl ether. Orange crystals (15.6 mg, 65% yield). ¹H NMR (CDCl₃) δ 15.5 (br s, 1H), 8.78 (d, *J* = 5.0 Hz, 1H), 8.11 (d, *J* = 7.0 Hz, 1H), 8.06 (td, *J* = 7.8, 1.4 Hz, 1H), 7.74 (ddd, *J* = 7.3, 5.9, 1.4 Hz, 1H), 6.15 (d, *J* = 14 Hz, 1H), 5.54 (d, *J* = 14 Hz, 1H), 4.23 (q, *J* = 7.0 Hz, 2H), 1.91 (s, 15H), 1.30 (t, *J* = 7.0 Hz, 3H); ¹³C{¹H} NMR (CDCl₃) δ 173.6, 155.1, 153.9, 151.6, 140.0, 129.8, 127.7, 90.6, 65.3, 64.9, 14.3, 9.53; IR (KBr, cm⁻¹) 1755 (v_{C=0}), 1600 (v_{C=N}), 1260 (v_{C-0}); Anal. Calcd for C₂₀H₂₇Cl₂IrN₂O₃: C, 39.60; H, 4.49; N, 4.62. Found: C, 39.23; H, 4.24; N, 4.53.

Synthesis of 2eCl: This compound was obtained from $[Cp*IrCl(\mu-Cl)]_2$ (31.4 mg, 0.039 mmol) and oxime sulfonate **1e** (18.2 mg, 0.085 mmol) according to *general procedure*. The reaction time was 6 h. The product was purified by recrystallization from dichloromethane–methanol–diethyl ether. Orange crystals (40.5 mg, 84% yield). ¹H NMR (CDCl₃) δ 14.4 (br s, 1H), 8.79 (d, *J* = 4.5 Hz, 1H), 8.25 (d, *J* = 7.5 Hz, 1H), 8.13 (td, *J* = 7.8, 1.2 Hz, 1H), 7.79 (ddd, *J* = 7.3, 5.6, 1.6 Hz, 1H), 5.28 (d, *J* = 13 Hz, 1H), 5.10 (d, *J* = 13 Hz, 1H), 2.84 (s, 3H), 1.87 (s, 15H); ¹³C{¹H} NMR (CDCl₃) δ 174.8, 154.6, 151.6, 140.0, 129.7, 128.2, 90.6, 39.9, 39.6, 9.28; IR (KBr, cm⁻¹) 1599 (v_{C=N}), 1187 (v_{S=O}); Anal. Calcd for C₁₈H₂₅Cl₂IrN₂O₃S: C, 35.29; H, 4.11; N, 4.57 Found: C, 35.33; H, 4.01; N, 4.53.


Synthesis of 2fCl: This compound was obtained from $[Cp*IrCl(\mu-Cl)]_2$ (62.9 mg, 0.079 mmol) and oxime sulfonate **1f** (60.8 mg, 0.209 mmol) according to *general procedure*. The reaction time was 6 h. The product was purified by precipitation from dichloromethane–methanol–diethyl ether. Red oil (52.4 mg, 48% yield). ¹H NMR (CDCl₃) δ 14.3 (br s, 1H), 8.78 (d, *J* = 5.0 Hz, 1H), 8.23 (d, *J* = 7.0 Hz, 1H), 8.09 (t, *J* = 7.3, 1H), 7.81 (d, *J* = 8.0 Hz, 2H), 7.77 (m, 1H), 7.16 (d, *J* = 8.0 Hz, 2H), 5.27 (d, *J* = 13 Hz, 1H), 5.10 (d, *J* = 13 Hz, 1H), 2.35 (s, 3H), 1.83 (s, 15H); ¹³C{¹H} NMR (CDCl₃) δ 175.2, 154.3, 151.8, 142.5, 140.1, 140.1, 130.0, 128.9, 128.4, 126.3, 90.6, 39.8, 21.5, 9.27; IR (KBr, cm⁻¹) 1600 (v_{C=N}), 1184 (v_{S=O}); Anal. Calcd for C₂₄H₂₉Cl₂IrN₂O₃S: C, 41.86; H, 4.24; N, 4.07. Found: C, 41.47; H, 4.25; N, 4.14.

Synthesis of 2aBF4



A mixture of $[Cp*IrCl(\mu-Cl)]_2$ (31.9 mg, 0.040 mmol) and oxime acetate **1a** (15.1 mg, 0.085 mmol) in dichloromethane (7 mL) was stirred at 25 °C for 3 h. NaBF₄ (11.0 mg, 0.100 mmol) was added to the resulting mixture and stirred for additional 3 h. Then, the mixture was filtered through a Celite pad, and the filtrate was concentrated in vacuo. The crude product was purified by recrystallization from dichloromethane–methanol–diethyl ether to give **2a**BF₄ as orange crystals (31.0 mg, 62% yield). ¹H NMR (CD₂Cl₂) δ 11.6 (br s, 1H), 8.82 (d, *J* = 5.5 Hz, 1H), 8.16 (td, *J* = 7.6, 1.2 Hz, 1H), 8.10 (br d, *J* = 7.5 Hz, 1H), 7.83 (ddd, *J* = 7.3, 5.8, 1.5 Hz, 1H), 5.53 (d, *J* = 16 Hz, 1H), 5.44 (d, *J* = 17 Hz, 1H), 2.25 (s, 3H), 1.82 (s, 15H); ¹³C{¹H} NMR (CD₂Cl₂) δ 176.0, 170.1, 154.0, 152.2, 140.5, 130.8, 127.9, 90.8, 62.9, 20.8, 9.13; IR (KBr, cm⁻¹) 1751 (v_{C=0}), 1600 (v_{C=N}), 1234 (v_{C-O}), 1084 (v_{B-F}); Anal. Calcd for C₁₉H₂₅BClF₄IrN₂O₂: C, 36.35; H, 4.01; N, 4.46. Found: C, 36.46; H, 3.86; N, 4.44.

Synthesis of 4Cl

A mixture of $[Cp*IrCl(\mu-Cl)]_2$ (47.8 mg, 0.060 mmol) and oxime ether **3** (18.9 mg, 0.126 mmol) in dichloromethane was stirred at 25 °C for 3 h. After the completion of the reaction, the mixture was concentrated in vacuo. The crude product was purified by recrystallization from dichloromethane–methanol–diethyl ether to give **4**Cl as orange crystals (48.8 mg, 74% yield). ¹H NMR (CDCl₃) δ 8.84 (d, *J* = 4.5 Hz, 1H), 8.62 (d, *J* = 8.0 Hz, 1H), 8.27 (t, *J* = 7.5 Hz, 1H), 7.93 (t, *J* = 6.3 Hz, 1H), 3.95 (s, 3H), 2.98 (s, 3H), 1.80 (s, 15H); ¹³C{¹H} NMR (CDCl₃) δ 171.6, 153.2, 151.8, 141.0, 130.5, 129.2, 90.8, 63.3, 14.5, 9.14; IR (KBr, cm⁻¹) 1610 (v_{C=N}); Anal. Calcd for C₁₈H₂₅Cl₂IrN₂O: C, 39.41; H, 4.59; N, 5.11. Found: C, 39.31; H, 4.68; N, 4.83.

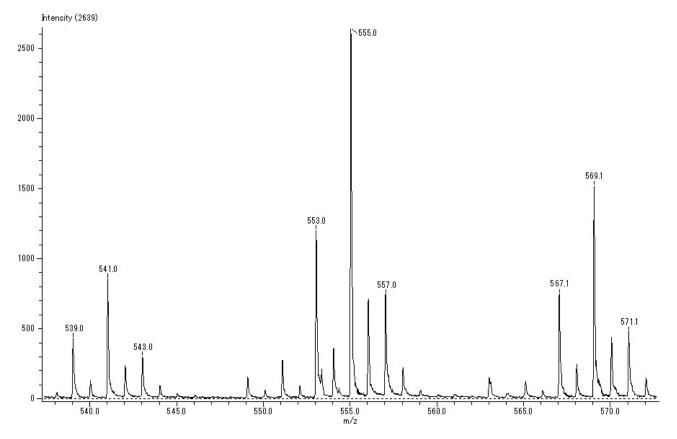


Fig. S1. ESI-MS spectrum (positive ion mode) for the reaction mixture in Scheme 3 (A crossover experiment).

X-ray diffraction studies

Diffraction data were collected on a Rigaku VariMax Saturn CCD diffractometer with graphite monochromated Mo-Ka radiation ($\lambda = 0.71075$ Å) at -180 °C. Intensity data were corrected for Lorentz and polarization effects and for an empirical absorption.^{S1} All calculations were performed using the *CrystalStructure*^{S2} crystallographic software package except for refinements, which was performed using SHELXL-97.^{S3} The structures were solved by direct methods (SIR-97 for **2a**BF4^{S4} and SIR-2011 for **4**Cl^{S5}) and expanded using Fourier techniques. Non-hydrogen atoms were refined on F^2 anisotropically by full-matrix least-squares techniques. Hydrogen atoms were placed at the calculated positions with fixed isotropic parameters. Details of the X-ray diffraction study are summarized in Table S1.

	2a BF ₄	4Cl·CH ₃ OH
CCDC	1555548	1555549
empirical formula	C ₁₉ H ₂₅ BClF ₄ IrN ₂ O ₂	C ₁₉ H ₂₉ Cl ₂ IrN ₂ O ₂
formula weight	627.90	580.58
dimension of crystals	0.23×0.08×0.07	0.186×0.171×0.089
crystal system	orthorhombic	monoclinic
space group	P2 ₁ 2 ₁ 2 ₁ (#19)	P2 ₁ /c (#14)
<i>a</i> [Å]	7.5430(10)	11.7603(11)
<i>b</i> [Å]	12.7445(17)	12.1239(12)
<i>c</i> [Å]	22.732(3)	15.2286(15)
α[°]	90.0000	90.0000
β [°]	90.0000	91.3973(15)
γ[°]	90.0000	90.0000
V [Å ³]	2185.2(6)	2170.7(4)
Ζ	4	4
$ ho_{ m calcd} \ [m g \ m cm^{-3}]$	1.908	1.776
<i>F</i> (000)	1216	1136
μ [cm ⁻¹]	63.005	64.289
trans. factors range	0.444-0.643	0.362-0.564
index ranges	$-9 \le h \le 9$	$-15 \le h \le 13$
	$-16 \le k \le 12$	$-15 \le k \le 15$
	$-29 \le l \le 29$	$-19 \le l \le 19$
no. rflns measured	17827	17299
no. unique rflns	8521	8138
Rint	0.0385	0.0330
no. rflns $(I > 2\sigma(I))$	5000	4889
no. params refined	271	347
$R1 (I > 2\sigma(I))^{a}$	0.0269	0.0253
R (All cata)	0.0315	0.0296
wR2 (All cata) ^b	0.0545	0.0622
GOF ^c	0.994	1.098
max diff peak/hole [e Å ⁻³]	1.70/-2.09	0.76/-2.15

Table S1. X-ray crystallographic data for 2aBF4 and 4Cl.

^a $RI = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. ^b $wR2 = [\Sigma \{w(F_o^2 - F_c^2)^2\} / \Sigma w(F_o^2)^2]^{1/2}, w = 1 / [\sigma^2 F_o^2 + (aP)^2 + bP]$ (*a* and *b* are constants suggested by the refinement program; $P = [max(F_o^2, 0) + 2F_c^2] / 3$). ^cGOF $= [\Sigma w(F_o^2 - F_c^2)^2 / (N_{obs} - N_{params})]^{1/2}$.



Fig. S2. ¹H NMR (CD₂Cl₂) spectrum of 2aCl.

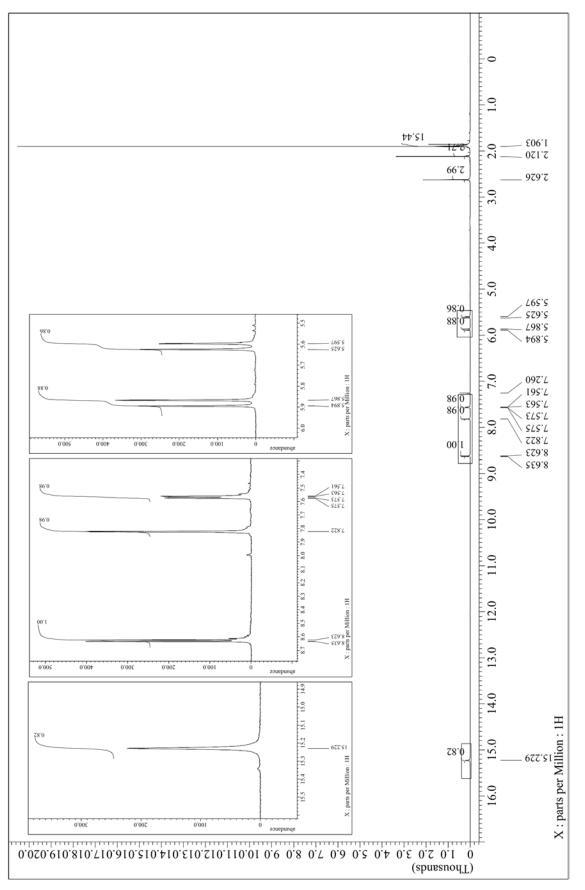
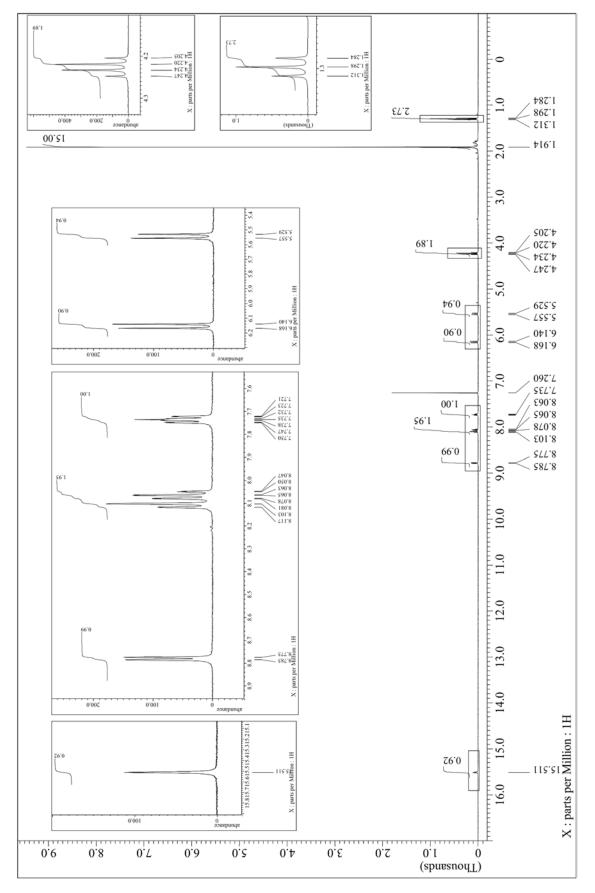



Fig. S3. ¹H NMR (CDCl₃) spectrum of 2bCl.

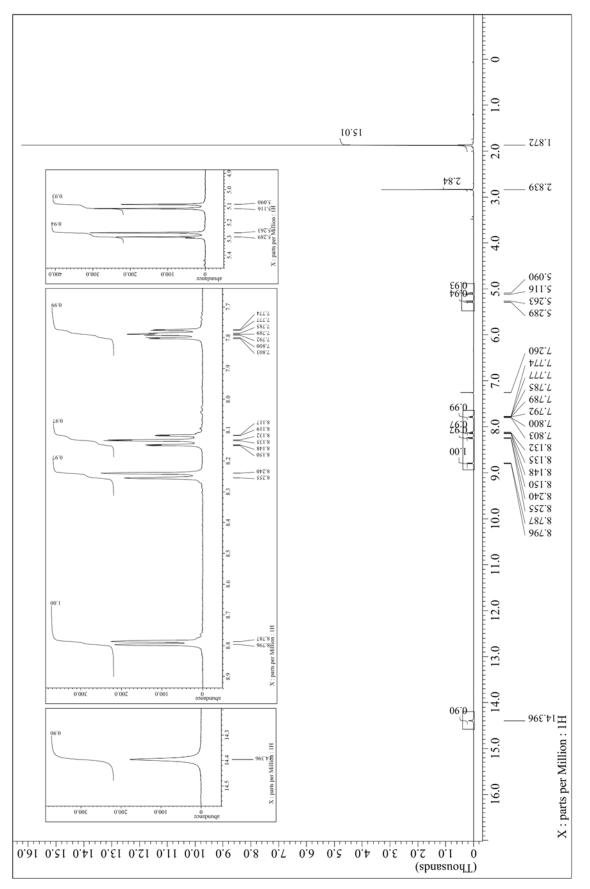


Fig. S5. ¹H NMR (CDCl₃) spectrum of 2eCl.

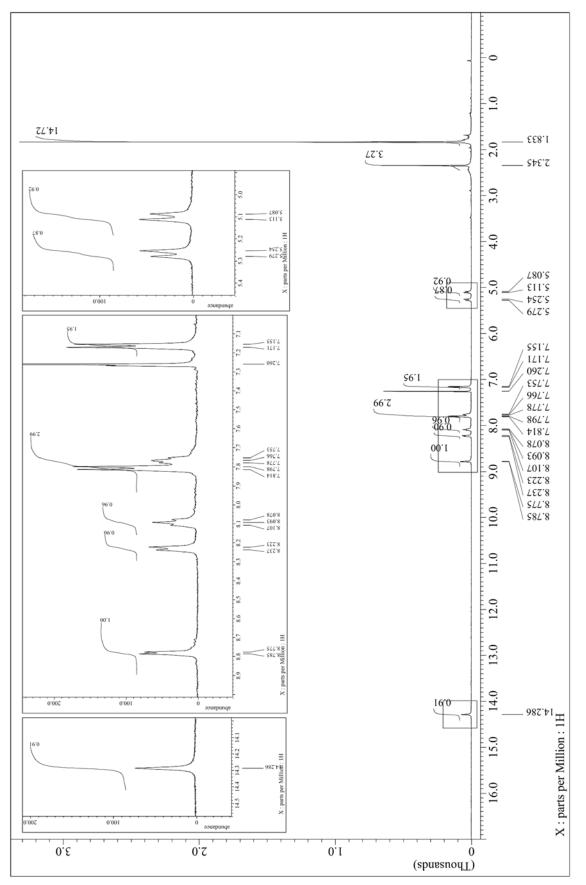
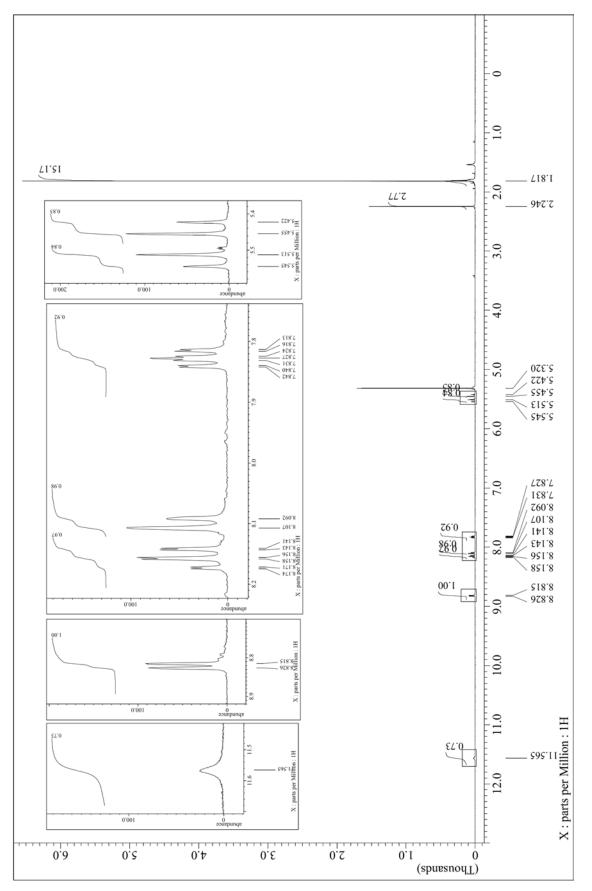
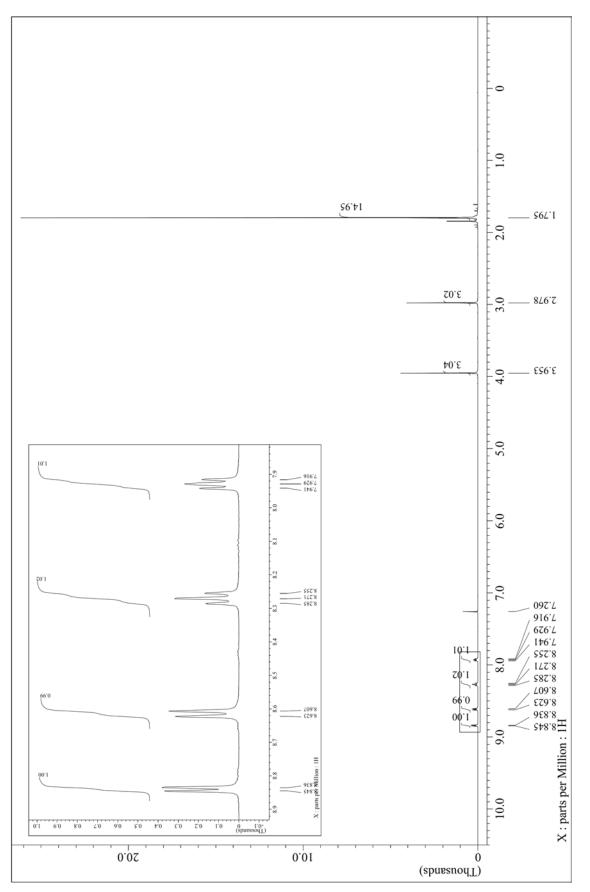




Fig. S6. ¹H NMR (CDCl₃) spectrum of 2fCl.

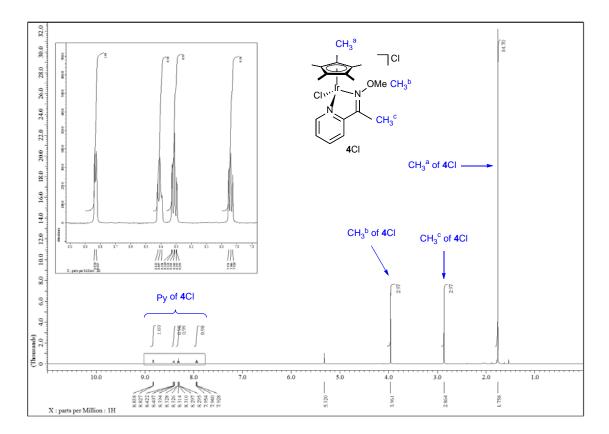


Fig. S9. Full ¹H NMR (CD₂Cl₂-D₂O) spectrum of 4Cl.

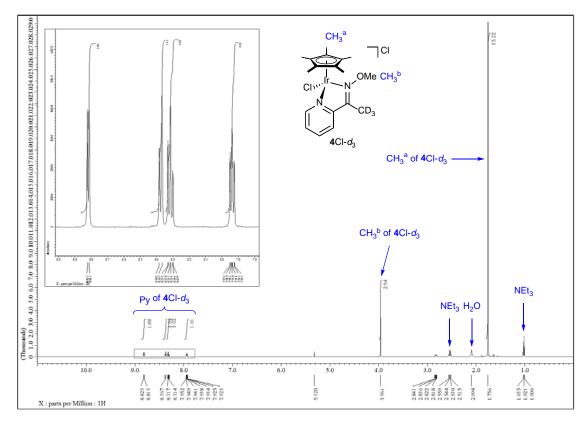


Fig. S10. Full ¹H NMR (CD₂Cl₂-D₂O-NEt₃) spectrum of 4Cl-d₃.

References

- R. A. Jacobson, *REQAB: Private Communication to Rigaku Corporation*; Rigaku Corporation: Tokyo, Japan, 1998.
- (2) CrystalStructure 4.2.4: Crystal Structure Analysis Package; Rigaku Corporation: Tokyo, Japan, 2000–2016.
- (3) G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112–122.
- (4) A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr., 1999, 32, 115–119.
- (5) M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori, R. Spagna, J. Appl. Crystallogr., 2012, 45, 357–361.