Supporting information

A micrometer-sized europium(III)-organic framework for selective sensing of Cr₂O₇²⁻ anion and picric acid

in water system

Hongming He, a Si-Hang Chen, De-Yu Zhang, Rui Hao, Chao Zhang, En-Cui Yang, and Xiao-Jun Zhao, A De-Yu Zhang, Chao Zhang, Chao

^a Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China. E-mail: <u>encui_yang@163.com</u>, <u>xiaojun_zhao15@163.com</u>; Fax: +86-22-23766556

^b Synergetic Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China

Eu(1)-O(10) ^{#1}	2.305(2)	Eu(1)–O(3)	2.319(2)
Eu(1)-O(8)#2	2.337(2)	Eu(1)–O(9)	2.369(2)
Eu(1)–O(11)	2.402(2)	Eu(1)–O(13W)	2.423(2)
Eu(1)–O(2)	2.476(2)	Eu(1)–O(6)	2.496(2)
Eu(2)–O(2)	2.613(2)	Eu(2)–O(4) ^{#3}	2.246(2)
Eu(2)-O(7) ^{#4}	2.407(2)	Eu(2)-O(5)#4	2.449(2)
Eu(2)–O(1)	2.461(2)	Eu(2)–O(9)	2.467(2)
Eu(2)–O(6)	2.476(2)	Eu(2)-O(12)#4	2.484(2)
Eu(2)-O(11) ^{#4}	2.554(2)		
O(10)#1-Eu(1)-O(3)	75.58(8)	O(10) ^{#1} -Eu(1)-O(11)	82.43(8)
O(3)-Eu(1)-O(8) ^{#2}	95.70(8)	O(10) ^{#1} -Eu(1)-O(9)	129.02(8)
O(3)–Eu(1)–O(9)	137.92(8)	O(8) ^{#2} –Eu(1)–O(9)	74.59(8)
O(8) ^{#2} -Eu(1)-O(11)	95.66(8)	O(9)–Eu(1)–O(11)	70.31(8)
O(10) ^{#1} –Eu(1)–O(13W)	79.04(8)	O(3)–Eu(1)–O(13W)	86.14(9)
O(8) ^{#2} -Eu(1)-O(13W)	74.33(8)	O(9)–Eu(1)–O(13W)	127.67(8)
O(11)-Eu(1)-O(13W)	72.11(8)	O(10) ^{#1} -Eu(1)-O(2)	116.86(8)
O(3)–Eu(1)–O(2)	68.85(8)	O(8) ^{#2} –Eu(1)–O(2)	82.50(8)
O(9)–Eu(1)–O(2)	69.31(7)	O(11)–Eu(1)–O(2)	138.54(8)
O(13W)–Eu(1)–O(2)	143.94(8)	O(10)#1-Eu(1)-O(6)	70.12(8)
O(3)–Eu(1)–O(6)	100.54(8)	O(8) ^{#2} –Eu(1)–O(6)	137.37(8)

Table S1 Selected bond lengths (Å) and angles (deg) for 1.

O(9)–Eu(1)–O(6)	66.94(7)	O(11)–Eu(1)–O(6)	88.33(7)
O(13W)–Eu(1)–O(6)	145.42(7)	O(2)–Eu(1)–O(6)	67.53(7)
O(10) ^{#1} -Eu(1)-Eu(2) ^{#1}	50.32(6)	O(3)-Eu(1)-Eu(2) ^{#1}	125.09(5)
O(8) ^{#2} -Eu(1)-Eu(2) ^{#1}	126.97(6)	O(9)-Eu(1)-Eu(2) ^{#1}	90.56(5)
O(11)-Eu(1)-Eu(2) ^{#1}	32.89(5)	O(13W)–Eu(1)–Eu(2) ^{#1}	76.22(6)
O(2)–Eu(1)–Eu(2) ^{#1}	139.42(5)	O(6)-Eu(1)-Eu(2) ^{#1}	72.23(5)
O(4) ^{#3} -Eu(2)-O(7) ^{#4}	77.49(8)	O(4) ^{#3} –Eu(2)–O(5) ^{#4}	102.17(8)
O(7) ^{#4} -Eu(2)-O(5) ^{#4}	68.23(7)	O(4) ^{#3} –Eu(2)–O(1)	77.64(8)
O(7) ^{#4} -Eu(2)-O(1)	146.94(7)	O(5) ^{#4} –Eu(2)–O(1)	138.85(8)
O(4) ^{#3} –Eu(2)–O(9)	133.29(8)	O(7) ^{#4} –Eu(2)–O(9)	69.47(8)
O(5) ^{#4} -Eu(2)-O(9)	95.32(8)	O(1)–Eu(2)–O(9)	114.89(7)
O(4) ^{#3} -Eu(2)-O(6)	76.09(8)	O(7) ^{#4} –Eu(2)–O(6)	78.38(7)
O(5) ^{#4} -Eu(2)-O(6)	145.94(7)	O(1)–Eu(2)–O(6)	74.75(7)
O(9)–Eu(2)–O(6)	65.80(7)	O(4) ^{#3} –Eu(2)–O(12) ^{#4}	78.18(8)
O(7)#4-Eu(2)-O(12)#4	124.37(8)	O(5) ^{#4} –Eu(2)–O(12) ^{#4}	69.27(8)
O(1)-Eu(2)-O(12) ^{#4}	70.52(8)	O(9)-Eu(2)-O(12) ^{#4}	148.23(7)
O(6)-Eu(2)-O(12)#4	140.28(7)	O(4) ^{#3} –Eu(2)–O(11) ^{#4}	129.14(8)
O(7) ^{#4} -Eu(2)-O(11) ^{#4}	135.64(7)	O(5) ^{#4} –Eu(2)–O(11) ^{#4}	71.29(7)
O(1)-Eu(2)-O(11) ^{#4}	77.37(7)	O(9)-Eu(2)-O(11) ^{#4}	97.45(7)
O(6)-Eu(2)-O(11) ^{#4}	136.25(7)	O(12) ^{#4} -Eu(2)-O(11) ^{#4}	51.83(7)
O(4) ^{#3} –Eu(2)–O(2)	121.57(8)	O(7) ^{#4} –Eu(2)–O(2)	130.75(7)
O(5)#4-Eu(2)-O(2)	134.08(7)	O(1)–Eu(2)–O(2)	51.30(7)
O(9)–Eu(2)–O(2)	65.64(7)	O(6)–Eu(2)–O(2)	65.71(7)
O(12) ^{#4} –Eu(2)–O(2)	104.59(7)	O(11) ^{#4} –Eu(2)–O(2)	70.55(7)

^{*a*} Symmetry codes: ^{#1} x, 0.5 – y, z – 0.5; ^{#2} x + 1, 1/2 – y, z + 1/2; ^{#3} x – 1, y, z; ^{#4} x, 1/2 – y, z + 1/2.

Fig. S1 SEM image of micrometer-sized 1.

 $\mu_{4}-\eta^{1}:\eta^{2}:\eta^{2}:\eta^{1}$ $\mu_{4}-\eta^{2}:\eta^{1}:\eta^{1}:\eta^{1}$ $\mu_{3}-\eta^{1}:\eta^{1}:\eta^{2}:\eta^{1}$

Fig. S2 Binding modes of DCPA²⁻ ligand in the targeted complex.

Fig. S3 Three-dimensional stacking structure of 1.

Fig. S4 TGA curve of 1.

Fig. S5 Comparisons of the emission spectra of 1 immersed in different aqueous solutions with or without the anions to be recognized.

Fig. S6 Plots of quenching efficiency (a and b) and I_0/I (c and d) vs concentrations of $Cr_2O_7^{2-}$ anion and PA

molecule.

Fig. S7 PXRD patterns of 1 after recycling seven times in $Cr_2O_7^{2-}$ and PA aqueous solution.

Fig. S8 Excitation spectrum of 1 and UV-Vis absorption spectra of different anions in aqueous solution (left) and NACs in ethanol (right).