Supplementary information

Synthesis, structure and properties of bimetallic sodium rare earth (RE)

borohydrides, NaRE(BH₄)₄, RE = Ce, Pr, Er or Gd.

SeyedHosein Payandeh GharibDoust^a, Dorthe B. Ravnsbæk^b, Radovan Černý^c and Torben R. Jensen^{a*}

^aDepartment of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.

^bDepartment of Physics, Chemistry and Pharmacy, University of Southern Denmark (SDU), 5320 Odense M, Denmark

^cLaboratory of Crystallography, Department of Quantum Matter Physics, University of Geneva, Quai Ernest-Ansermet 24, Geneva, Switzerland

Figure S1 *In-situ* SR-XRPD data for Gd(BH₄)₃–NaBH₄ (1:1, s5). $\Delta T/\Delta t = 5$ °C min⁻¹ (SLS, $\lambda = 0.62177$ Å)

Figure S2 XRPD pattern and refinement for Ce(BH₄)₃–NaBH₄(1:1, **s1**, $\lambda = 0.7129$) recorded at 181 °C. Red line: experimental data; black line: calculated pattern, blue line: difference pattern. Sample composition: 1. Top, blue tick: NaBH₄ (58.31 wt%). 2. Middle red ticks: Ce(BH₄)₃ (*Fm*³*c*, 3.08wt%) and 3. Bottom green ticks, NaCe(BH₄)₄ (38.61 wt%). $R_{wp} = 7.59\%$ (not corrected for background), $\chi^2 = 359$. The Bragg reflections that aren't refined are for the U2 phase.

Figure S3 XRPD pattern and refinement for $Pr(BH_4)_3$ –NaBH₄ (1:1, **s4**, $\lambda = 0.7458$) recorded at 134 °C. Red line: experimental data; black line: calculated pattern, blue line: difference pattern. Sample composition: 1. Top, blue tick: $Pr(BH_4)_3$ (16.48 wt%,). 2. Middle red Ticks: NaBH₄ (25.35 wt%,) and 3. Bottom green ticks, NaPr(BH₄)₄ (58.17 wt%). $R_{wp} = 5.85\%$ (not corrected for background), $\chi^2 = 319$.

Figure S4 XRPD pattern and refinement of NaEr(BH₄)₄ (s7, $\lambda = 0.7129$) recorded at 122 °C (correct). Red line: experimental data; black line: calculated pattern, blue line: difference pattern. $R_{wp} = 2.35\%$ (not corrected for background), $\chi^2 = 190$.

Figure S5 XRPD patterns ($\lambda = 1.54056$ Å) of Ce(BH₄)₃–NaBH₄ (1 : 1, **s1**) after first decomposition (black curve) and fourth absorption (blue curve). Symbols: (a), CeB₆; (b), CeH_{2+x}; (c); NaBH₄ and \Rightarrow for U5.

Figure S6 XRPD patterns ($\lambda = 1.54056$ Å) of Pr(BH₄)₃–NaBH₄ (1 : 1, **s3**) after first decomposition (black curve) and fourth absorption (blue curve). Symbols: •, PrB₆; •, PrH₂ and ∞ for NaBH₄.

Figure S7 XRPD patterns ($\lambda = 1.54056$ Å) of Er(BH₄)₃–NaBH₄ (1 : 1, s7) after first decomposition (black curve) and fourth absorption (blue curve). Symbols: *, ErH_{2+x}; &, Na; O, ErB₄ and O for Er₂O₃.

Figure S8 FT-IR spectra of NaRE(BH₄)₄, RE = Ce, Pr, Er, after fifth absorption. The FT-IR spectra of NaBH₄ is also presented as a reference.

Temperature programmed photographic analysis

Figure S9 Temperature programmed photographic analysis of samples s1, s3, s5 and s7 ($\Delta T/\Delta t = 5$ °C/min, argon atmosphere).

The behaviors of the samples **s1**, **s3**, **s5**, and **s7** during heat treatment are investigated by temperature programmed photographic analysis (TPPA) and are displayed in Figure S10. NaBH₄ - Ce(BH₄)₃ (1:1, **s1**) is a white powder at RT. At $T \sim 170$ °C the sample starts to melt and foam, which corresponds to the maximum diffracted intensity of NaCe(BH₄)₄ observed by *in-situ* XRPD. Foaming continues to $T \sim 212$ °C and further heating of the sample leads to decomposition at ~230 °C and the color change to black. The disappearance of the Bragg reflections at T = 187 °C in the *in-situ* XRPD is associated with the melting/foaming of the sample.

NaBH₄ - Pr(BH₄)₃ (1:1, **s3**) sample is light yellow at RT but changes to dark yellow at $T \sim 170$ °C associated with the formation of NaPr(BH₄)₄. At $T \sim 211$ °C, the pellet's color turns red, which corresponds to the formation of U4. At T > 250 °C, the sample obtain a black color due to decomposition. NaBH₄ - Gd(BH₄)₃ (1:1, **s5**) sample is white at RT. The pellet shrinks and the sample's color changes to yellow at $T \sim 199$ °C, which matches the formation of humps in the XRPD background data by quenching the sample at $T \sim 205$ °C and suggests the formation of a new unstable compound, see Figure 1.b. At T > 270 °C the sample turns black due to decomposition. TPPA shows that NaBH₄ - Er(BH₄)₃ (1:1, **s7**) is pink at RT and starts to melt/froth at $T \sim 165$ °C and significant volume expansion occurs at ~190 °C. At T > 216 °C, the sample starts to decompose and obtain a black color.