Supporting Information

Synthesis and Characterization of New Tripodal Lanthanide Complexes and Investigation of Their Optical and Magnetic Properties

Alexander R. Craze,^a Xin-Da Huang,^b Isaac Etchells,^c Li-Min Zheng,^b Mohan M. Bhadbhade,^d Christopher E. Marjo,^d Jack K. Clegg,^c Evan G. Moore^c, Maxim Avdeev,^e Leonard F. Lindoy^f and Feng Li^{*a}

^aSchool of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia

^bState Key Laboratory of Coordination Chemistry, Institute of Coordination Chemistry at Nanjing University, Qixia District, Nanjing, Jiangsu Province, China.

^cSchool of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane St Lucia, QLD 4072, Australia

^dMark Wainwright Analytical Centre, University of New South Wales, NSW, 2052, Australia

^eBragg Institute, Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, Australia

^fSchool of Chemistry, University of Sydney, NSW 2006 Australia

Dr Feng Li School of Science and Health Western Sydney University Locked Bag 1797, Penrith NSW 2751, Australia Tel: +61 2 9685 9987 Fax: +61 2 9685 9915 E-mail: feng.li@westernsydney.edu.au

Table of Contents

Figure S1: ¹ H-NMR spectrum of H ₃ L
Figure S2: ¹³ C-NMR spectrum of H ₃ L
Figure S3: ESI-HRMS spectrum of $[H_3L]$. The inset shows the isotope pattern for $[H_3L+H]^+$,
simulated (top) and experimental (bottom)4
Figure S4: EDS spectrum of [EuL]. The inset shows the SEM image of the hexagonal plate
crystals4
Figure S5: EDS spectrum of [GdL]. The inset shows the SEM image of the hexagonal plate crystals
Figure S6: EDS spectrum of [DyL]. The inset shows the SEM image of the hexagonal plate crystals
Figure S7: ESI-HRMS spectra of [EuL]. The inset shows the isotope pattern for [EuL+H] ⁺ , simulated (top) and experimental (bottom)
Figure S8: ESI-HRMS spectra of [GdL]. The inset shows the isotope pattern for [GdL+H] ⁺ , simulated (top) and experimental (bottom)
Figure S9: ESI-HRMS spectra of [DyL]. The inset shows the isotope pattern for [DyL+H] ⁺ ,
Figure S10, DVDD pattors for LL
Figure S10: PARD pattern for Eul
Figure S11: FARD pattern for GdI
Figure S12. FARD pattern for Dul
Figure S13. TARD patent for DyL
Table S1 Continuous Shape Measure (CSbM) analyses of geometries for compound [DyL] by
SHAPE2.1 Software
Figure S15 . A comparison of the observed emission spectra in DCM solution ($\lambda_{ex} = 350$ nm,
dashed lines) and solid state ($\lambda_{ex} = 380$ nm, solid lines) for [LnL] complexes with Ln = Eu (red) and Dy (nink). Spectra are offset for clarity.
Figure S16: Emission decay ($\lambda_{ex} = 350 \text{ nm}$, $\lambda_{em} = 616 \text{ nm}$) of [EuL] in DCM fitted to a mono exponential with a lifetime of 144.0 ± 0.01 µs10
Figure S17: Normalized emission spectra ($\lambda_{ex} = 350 \text{ nm}$) of the [GdL] complex at 298 K (red) and
77 K (blue) in 2-methyltetrahydrofuran10
Figure S18. The temperature dependence of χ MT for complexes [GdL] (black) and [EuL] (Grey)
measured at 1 kOe dc field
Figure S19. The M vs. H curves measured at different temperatures for complex [DyL]11
Figure S20. Frequency dependent in-phase (χ ') and out-of-phase (χ '') signals of [DyL] in indicated
dc fields at 1.9 K11
Figure S21. Variable-temperature in phase of ac susceptibility (χ ') for [DyL] below 1000 Hz ac
frequency under 500 Oe static field12
Figure S22: FT-IR spectrum of [H ₃ L]12
Figure S23: FT-IR spectrum of [EuL]. 13
Figure S24: FT-IR spectrum of [GdL]. 13
Figure S25: FT-IR spectrum of [DyL]. 14

Figure S1 ¹H-NMR spectrum of H₃L.

Figure S2: ¹³C-NMR spectrum of H₃L.

Figure S3. ESI-HRMS spectrum of $[H_3L]$. The inset shows the isotope pattern for $[H_3L+H]^+$, simulated (top) and experimental (bottom).

Figure S4. EDS spectrum of [EuL]. The inset shows the SEM image of the hexagonal plate crystals.

Figure S5. EDS spectrum of [GdL]. The inset shows the SEM image of the hexagonal plate crystals.

Figure S6. EDS spectrum of [DyL]. The inset shows the SEM image of the hexagonal plate crystals.

Figure S7. ESI-HRMS spectra of [EuL]. The inset shows the isotope pattern for [EuL+H]⁺, simulated (top) and experimental (bottom).

Figure S8. ESI-HRMS spectra of [GdL]. The inset shows the isotope pattern for [GdL+H]⁺, simulated (top) and experimental (bottom).

Figure S9. ESI-HRMS spectra of [DyL]. The inset shows the isotope pattern for $[DyL+H]^+$, simulated (top) and experimental (bottom).

Figure S10. PXRD pattern for H₃L.

Figure S11. PXRD pattern for [EuL].

Figure S12. PXRD pattern for [GdL].

Figure S13. PXRD pattern for [DyL].

Figure S14. X-ray single-crystal structure of the two [DyL] isomers, with Δ isomer in green and Λ in red.

Table S1. Continuous Shape Measure (CShM) analyses of geometries for compound [DyL] by

 SHAPE 2.1 Software

Geometries	CShM
Capped octahedron (C_{3v})	1.14621
Capped trigonal prism (C_{2v})	2.84385
Pentagonal bipyramid (D _{5h})	8.79823
Johnson pentagonal bipyramid J13 (D _{5h})	12.38500
Johnson elongated triangular pyramid J7 (C_{3v})	14.39724
Hexagonal pyramid (C _{6v})	21.50968
Heptagon (D _{7h})	35.60487

Figure S15. A comparison of the observed emission spectra in DCM solution ($\lambda_{ex} = 350$ nm, dashed lines) and solid state ($\lambda_{ex} = 380$ nm, solid lines) for [LnL] complexes with Ln = Eu (red) and Dy (pink). Spectra are offset for clarity.

Figure S16. Emission decay ($\lambda_{ex} = 350 \text{ nm}$, $\lambda_{em} = 616 \text{ nm}$) of [EuL] in DCM fitted to a mono exponential with a lifetime of 144.0 ± 0.01 µs.

Figure S17. Normalized emission spectra ($\lambda_{ex} = 350 \text{ nm}$) of the [GdL] complex at 298 K (red) and 77 K (blue) in 2-methyltetrahydrofuran.

Figure S18. The temperature dependence of $\chi_M T$ for complexes [GdL] (black) and [EuL] (Grey) measured at 1 kOe dc field.

Figure S19. The M vs. H curves measured at different temperatures for complex [DyL].

Figure S20. Frequency dependent in-phase (χ ') and out-of-phase (χ '') signals of [DyL] in indicated dc fields at 1.9 K

Figure S21. Variable-temperature in phase of ac susceptibility (χ ') for [DyL] below 1000 Hz ac frequency under 500 Oe static field.

Figure S22. FT-IR spectrum of [H₃L].

Figure S23. FT-IR spectrum of [EuL].

Figure S24. FT-IR spectrum of [GdL].

Figure S25. FT-IR spectrum of [DyL].