Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

## **Table of Contents**

| Figures S1–S15 | S1-S10 |
|----------------|--------|
| Tables S1–S5   |        |
| References     |        |



**Figure S1** The top (a) and side (b) view of the crystal structure of **2** measured at 120 K. The packing of **2** along *a*-axis (c). The overlay picture of low (120 K, green) and high (293 K, blue) temperature structures along *a*-axis. Thermal ellipsoids are drawn at 50 % probability. Hydrogen atoms are omitted for clarity (black = C; red = O; Green = chlorine; turquoise = dysprosium).



**Figure S2** The top (a) and side (b) view of the crystal structure of **1** measured at 120 K. The packing of 1 along *a*-axis (c). The overlay picture of low (120 K, green) and high (293 K, blue) temperature structures. Thermal ellipsoids are drawn at 50 % probability. Hydrogen atoms are omitted for clarity (black = C; red = O; Green = chlorine; light blue = yttrium)



Figure S3 Calculated (red 120 K and green 293 K) and experimental (blue 293 K) powder patterns from 5 to 70 degrees and from 10 to 35 degrees (inset) for 1.



Figure S4 Calculated (red 120 K and green 293 K) and experimental (blue 293 K) powder patterns from 5 to 70 degrees and from 10 to 35 degrees (inset) for 2.



Figure S5 Powder X-band EPR spectrum of 1<sup>-</sup> at 293 K (mod. amp. = 0.2 G, lw = 1.09 mT,  $g_{iso} = 2.003 \text{ G}$ ).



Figure S6 IR spectrum of 1 (red) and 1<sup>--</sup> (green).



Figure S7 IR spectrum of 2 (red) and 2<sup>--</sup> (green).



**Figure S8** Cyclic voltammograms showing the observed reduction and oxidation processes for 1 (red) and 2 (green) in THF solutions containing 0.1 M  $[(n-Bu)_4N]^+[PF_6]^-$  at Pt electrode with scan rate 0.2 V s<sup>-1</sup>. The E<sup>1/2</sup> potentials as well as peak potentials and currents are given in Table S3.



Figure S9 Cyclic voltammogram showing a potential window in THF solutions containing 0.1 M  $[(n-Bu)_4N]^+[PF_6]^-$  at Pt electrode with scan rate 0.2 V s<sup>-1</sup>.



Figure S11 The crystals structure of 3 measured at 120 K. Hydrogen atoms are omitted for clarity and thermal ellipsoids are drawn at 50 % probability (black = C; red = O; yellow = Si).<sup>1</sup>



Figure S12 <sup>1</sup>H NMR spectrum of 1 in THF-d<sub>8</sub>.



Figure S13 ESI-MS spectra of complexes a) 1 and b) 2. Insets show the experimental isotopic distribution for the complexes and their comparison to theoretical pattern (red dotted line) calculated on basis of natural abundances for elements.



Figure S14 Experimental powder patterns 5 to 70 degrees and from 10 to 35 degrees (inset) for 1 (red), 2 (green) and doped sample Dy@1 (blue) at 293 K.



Figure S15 IR spectra of 1 (red), 2 (green), Dy@1 (blue). The Y-axes of 2 and Dy@1 are slightly displaced for the clarity.

|          | 1          |            |           |         | 2         |             |           |  |  |
|----------|------------|------------|-----------|---------|-----------|-------------|-----------|--|--|
| Bond (Å) |            | Angle      | Angle (°) |         | d (Å)     | Angle (°)   |           |  |  |
| Y1-Cl1   | 2.5999(7)  | Cl1-Y1-Cl2 | 176.26(2) | Dy1-Cl1 | 2.603(2)  | Cl1-Dy1-Cl2 | 175.87(8) |  |  |
| Y1-Cl2   | 2.5819(7)  | Cl1-Y1-O1  | 84.74(5)  | Dy1-Cl2 | 2.587(2)  | Cl1-Dy1-O1  | 84.90(17) |  |  |
| Y1-01    | 2.3301(17) | Cl1-Y1-O2  | 88.42(5)  | Dy1-O1  | 2.338(6)  | Cl1-Dy1-O2  | 88.93(17) |  |  |
| Y1-O2    | 2.3124(17) | Cl1-Y1-O3  | 89.73(5)  | Dy1-O2  | 2.329(6)  | Cl1-Dy1-O3  | 89.60(18) |  |  |
| Y1-O3    | 2.375(2)   | Cl1-Y1-O4  | 82.15(5)  | Dy1-O3  | 2.388(6)  | Cl1-Dy1-O4  | 81.93(17) |  |  |
| Y1-04    | 2.4097(18) | Cl1-Y1-O5  | 97.04(5)  | Dy1-O4  | 2.427(6)  | Cl1-Dy1-O5  | 97.53(16) |  |  |
| Y1-05    | 2.3652(19) | Cl2-Y1-O1  | 98.59(5)  | Dy1-O5  | 2.393(6)  | Cl2-Dy1-O1  | 98.76(17) |  |  |
| C1-O1    | 1.265(3)   | Cl2-Y1-O2  | 91.24(5)  | C1-O1   | 1.272(10) | Cl2-Dy1-O2  | 90.68(17) |  |  |
| C2-O2    | 1.259(3)   | Cl2-Y1-O3  | 86.61(5)  | C2-O2   | 1.273(10) | Cl2-Dy1-O3  | 86.37(18) |  |  |
| C1-C2    | 1.528(4)   | Cl2-Y1-O4  | 96.04(5)  | C1-C2   | 1.524(12) | Cl2-Dy1-O4  | 96.08(17) |  |  |
| C1-C3    | 1.389(4)   | Cl2-Y1-O5  | 85.60(5)  | C1-C3   | 1.383(12) | Cl2-Dy1-O5  | 85.39(15) |  |  |

Table S2 Observed intermolecular interactions along with their range in the crystal structures of 1 and 2.

|   | Н…Н         | С…Н   | 0…Н   | Сі…н        |
|---|-------------|-------|-------|-------------|
| 1 | 2.258-2.392 | 2.834 | 2.645 | 2.885-2.939 |
| 2 | 2.226-2.366 | -     | -     | -           |

**Table S3** Measured peak potentials and currents as well as  $E^{1/2}$  values for 1 and 2.

|         |                 | Reduction             |                      |               |               | Oxidation             |               |
|---------|-----------------|-----------------------|----------------------|---------------|---------------|-----------------------|---------------|
| Complex | $E^{ m pc}$ / V | $E^{\mathrm{pa}}$ / V | $E^{1/2}/\mathrm{V}$ | $I^c / \mu A$ | $I^a / \mu A$ | $E^{\mathrm{pa}}$ / V | $I^a / \mu A$ |
| 1       | -0.386          | -0.035                | -0.211               | 25.382        | 10.588        | 0.598                 | 6.303         |
| 2       | -0.397          | -0.014                | -0.206               | 5.503         | 2.199         | 0.586                 | 1.975         |

**Table S4** *Ab initio* values of the energies and the principal components of the **g** tensors in the eight lowest Kramers doublets (KD) corresponding to the crystal field split components of the  ${}^{6}\text{H}_{15/2}$  multiplet of the Dy<sup>3+</sup> ions in **2**.

| KD | $E \ / \ \mathrm{cm}^{-1}$ | $g_x$ | $g_y$ | $g_z$  |
|----|----------------------------|-------|-------|--------|
| 1  | 0                          | 0.252 | 0.817 | 18.604 |
| 2  | 44                         | 0.206 | 0.300 | 19.359 |
| 3  | 74                         | 2.500 | 4.525 | 11.653 |
| 4  | 132                        | 8.008 | 5.110 | 0.185  |
| 5  | 196                        | 3.068 | 4.124 | 11.027 |
| 6  | 251                        | 0.075 | 1.352 | 14.788 |
| 7  | 288                        | 0.985 | 2.392 | 12.182 |
| 8  | 306                        | 0.842 | 2.359 | 14.483 |

|                                             | 1 / 120K                    | 1 / 293K                       | <b>2</b> / 120K                | <b>2</b> / 293K                | <b>3</b> / 120 K               |
|---------------------------------------------|-----------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| CCDC ref. code                              | 1557623                     | -                              | 1557624                        | -                              | 1557625                        |
| Formula                                     | $C_{30}H_{50}Cl_4O_{10}Y_2$ | $C_{30}H_{50}Cl_4O_{10}Y_2$    | $C_{30}H_{50}Cl_4O_{10}Dy_2$   | $C_{30}H_{50}Cl_4O_{10}Dy_2$   | $C_{12}H_{20}O_4Si_2$          |
| FW                                          | 890.32                      | 890.32                         | 1037.50                        | 1037.50                        | 284.46                         |
| Crystal system                              | monoclinic                  | monoclinic                     | monoclinic                     | monoclinic                     | monoclinic                     |
| Space group                                 | $P2_{1}/n$                  | $P2_{1}/n$                     | $P2_{1}/n$                     | $P2_{1}/n$                     | $P2_{1}/c$                     |
| a/Å                                         | 9.0004(2)                   | 14.6798(17)                    | 9.0173(5)                      | 14.725(3)                      | 6.38820(16)                    |
| b/Å                                         | 14.8832(3)                  | 16.154(2)                      | 14.9995(9)                     | 16.151(2)                      | 9.9721(3)                      |
| c/Å                                         | 14.8047(3)                  | 9.1377(11)                     | 14.8171(8)                     | 9.1228(14)                     | 11.9758(3)                     |
| a/°                                         | 90                          | 90                             | 90                             | 90                             | 90                             |
| $\beta/^{\circ}$                            | 106.160(2)                  | 109.106(11)                    | 106.402(6)                     | 108.879(17)                    | 100.550(3)                     |
| γ/°                                         | 90                          | 90                             | 90                             | 90                             | 90                             |
| V/Å <sup>3</sup>                            | 1904.80(7)                  | 2047.5(5)                      | 1922.5(2)                      | 2052.9(6)                      | 750.01(3)                      |
| Ζ                                           | 2                           | 2                              | 2                              | 2                              | 2                              |
| Crystal size/mm <sup>3</sup>                | $0.15\times0.10\times0.06$  | $0.11 \times 0.06 \times 0.05$ | $0.15 \times 0.07 \times 0.07$ | $0.11 \times 0.07 \times 0.02$ | $0.54 \times 0.08 \times 0.08$ |
| $2\theta$ range/°                           | 10.392 to 135.962           | 8.402 to 133.994               | 8.57 to 137.964                | 8.382 to 133.972               | 11.63 to 139.988               |
| Reflections collected                       | 6301                        | 6386                           | 13827                          | 6707                           | 2455                           |
| Independent reflections, R <sub>int</sub>   | 3443, 0.0325                | 3528, 0.0437                   | 3572, 0.0465                   | 3620, 0.1243                   | 1415, 0.0169                   |
| Completeness/%                              | 99.5                        | 97.1                           | 99.9                           | 99.2                           | 99.5                           |
| Data/restraints/parameters                  | 3443/0/208                  | 3528/0/208                     | 3572/0/208                     | 3620/396/104                   | 1415/0/85                      |
| Goodness-of-fit on $F^2$                    | 1.037                       | 1.140                          | 1.180                          | 0.980                          | 1.036                          |
| Final <i>R</i> indices $[I \ge 2\sigma(I)]$ | $R_1 = 0.0296$              | $R_1 = 0.0589$                 | $R_1 = 0.0531$                 | $R_1 = 0.1890$                 | $R_1 = 0.0314$                 |
|                                             | $wR_2 = 0.0717$             | $wR_2 = 0.1539$                | $wR_2 = 0.1496$                | $wR_2 = 0.4197$                | $wR_2 = 0.0814$                |
| R indices (all data)                        | $R_1 = 0.0354$              | $R_1 = 0.1106$                 | $R_1 = 0.0584$                 | $R_1 = 0.2883$                 | $R_1 = 0.0332$                 |
|                                             | $wR_2 = 0.0764$             | $wR_2 = 0.2460$                | $wR_2 = 0.1524$                | $wR_2 = 0.5371$                | $wR_2 = 0.0834$                |
| Largest diff. peak/hole / e Å-3             | 0.62/-0.39                  | 0.78/-1.49                     | 1.73/-1.08                     | 0.78/-2.64                     | 0.28/-0.27                     |

Table S5 Crystal data and structural refinement for 1 and 2 measured at 120 K and 293 K.

 $\label{eq:source} \textbf{Table S6} \text{ HR-ESI-MS results for the complexes observed. Experimental and theoretical m/z values, charge states and molecular formulas.}$ 

| ion                                  | charge (+) | composition                                          | <i>m/z</i> theor | <i>m/z</i> exp | MW <sub>exp</sub> (Da) | MW <sub>theor</sub> (Da) | $\Delta_{m/z}$ |
|--------------------------------------|------------|------------------------------------------------------|------------------|----------------|------------------------|--------------------------|----------------|
| $[BQ(YCl \cdot THF_2)_2]^{2+}$       | 2          | $C_{22}H_{34}O_8Cl_2Y_2 \\$                          | 336.9868         | 336.9858       | 673.9716               | 673.9736                 | 0.001          |
| $[BQ(YCl \cdot THF_2)_2 + THF]^{2+}$ | 2          | $C_{26}H_{42}O_9Cl_2Y_2 \\$                          | 373.0156         | 373.0155       | 746.031                | 746.0312                 | 0.0001         |
| $[BQ(DyCl \cdot THF_2)_2]^{2+}$      | 2          | $C_{22}H_{34}O_8Cl_2Dy_2$                            | 411.0087         | 411.0336       | 822.0672               | 822.0174                 | -0.025         |
| [BQ(DyCl·THF·ACN)]+                  | 1          | C <sub>12</sub> H <sub>13</sub> O <sub>5</sub> NClDy | 449.9762         | 450.0671       | 450.0671               | 449.9762                 | -0.091         |
| [BQ(DyCl·ACN)] <sup>+</sup>          | 1          | C <sub>8</sub> H <sub>4</sub> O <sub>4</sub> NClDy   | 377.9187         | 377.9975       | 377.9975               | 377.9187                 | -0.079         |

## References

1. The crystal structure of **3** has been reported without synthetic details in private communication before: J. Wagler, E. Kroke and K. Krupinski, *CSD Communication (Private Communication)*, Refcode = GOFTAY.