Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Oxidant-free Synthesis of Benzimidazoles from Alcohols and Aromatic Diamines Catalysed by New Ru(II)-PNS(O) Pincer Complexes

Qi Luo, Zengjin Dai, Hengjiang Cong, Renjie Li, Tianyou Peng, and Jing Zhang*

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China

Table of Contents

1. General Information	S2
2. Experimental Procedures	S2
2.1 Schemes for the synthesis of PNS(O) L1 and SNC ^{NHC} L2	S2
2.2 Quantification of H ₂	S4
2.3 Characterization of in situ generated dearomatic complex	S6
2.4 NMR data for all the intermediates and compounds	S8
2.5 The characterization of benzimidazole derivatives	S22

1. General Information

All experiments with metal complexes were carried out under purified argon atmosphere using standard schlenk techniques. 1-hexanol, cyclohexylmethanol and benzyl alcohol were purified according to standard procedures under argon atmosphere. Other reagents were used as received. Solvents were distilled and degassed with argon and kept in the spherical reservoir bottle with 4 Å molecular sieve. The ¹H NMR and ¹³C NMR spectra were recorded at 300 MHz/75 MHz Varian Gemini 300 spectrometer. The ¹H NMR chemical shifts are referenced to the residual hydrogen signals of the deuterated solvents or TMS, and the ¹³C NMR chemical shifts are referenced to the ¹³C signals of the deuterated solvents.

2. Experimental Procedures

2.1 Schemes for the syntheses of ligands L1 and L2

Scheme 1S. The synthesis of 2-(diphenylphosphinomethyl)-8- (phenyl-sulfinyl)-quinoline (PNS(O), L1)

Scheme 2S. The synthesis of 1-mesityl-3-(8-phenylthioquinolyl-2- methyl)imidazolium bromide (HL2Br)

2.2 The production of H₂ catalyzed by complex 1a

(excess)	NH ₂ NH ₂ NH ₂ 1a (0.2 mol%) NaBPh ₄ (2% mol) 165°C,12 h,-H ₂ O	\rightarrow N $+ 2H_2$
Reaction Time	Total Volume of H ₂ ^b	Mole number of H ₂ ^{<i>c</i>}
1h	38 mL	1.43 mol
2h	62 mL	2.33 mol
4h	97 mL	3.64 mol
бh	107 mL	4.02 mol
12h	109 mL	4.10 mol

Table 1S. Condensation of benzyl alcohol and benzene-1,2-diamine: ^a

^{*a*} Reaction conditions: benzene-1,2-diamine (2.5 mmol), benzyl alcohol (7.5 mmol), NaBPh₄ (0.05 mmol), **1a** (0.005 mmol), 165 °C, 12 h. ^{*b*} The volume of H₂ was collected through gravity drainage method, and the blank experimental volume was removed. ^{*c*} The standard atmospheric pressure P = 101.325 KPa; room temperature T = 305.15 K, the corresponding vapor pressure P₀ = 4.758 KPa; The approximate amount of H₂ was calculated by Van der Waals equation: (P-P₀)V = nRT (R = 8.314 KPa L mol⁻¹ K⁻¹).

After the reaction was complete, the 2-phenyl-benzimidazole was isolated through the column chromatography, yield 0.412 g (85%). The yield of H_2 was 82%.

H NH ₂	0.2 mol% 1a Mesitylene ───────────────────────────────────	H + H ₂	
Reaction Time	Total Volume of H_2^b	Mole number of H ₂ ^{<i>c</i>}	
5 mim	23 mL	0.86 mmol	
10 min	57 mL	2.14 mmol	
15 min	87 mL	3.26 mmol	
20 min	104 mL	3.90 mmol	
25 min	112 mL	4.20 mmol	
30 min	115 mL	4.32 mmol	
60 min	115 mL	4.32 mmol	
^{<i>a</i>} Reaction condition: benzene-1,2-diamine (6 mmol), benzaldehyde (5 mmol), 1a (0.01			
mmol), mesitylene (2 mL)165 °C, 1 h. ^b The volume of H ₂ was collected through gravity			
drainage method, and the blank experimental volume was removed. ^c The standard			
atmospheric pressure $P = 101.325$ KPa; room temperature $T = 305.15$ K, the			
corresponding vapor pressure $P_0 = 4.758$ KPa; The approximate amount of H_2 was			
calculated by Van der Waals equation: $(P-P_0)V = nRT$ ($R = 8.314$ KPa L mol ⁻¹ K ⁻¹).			

Table 2S. Condensation of benzaldehyde and benzene-1,2-diamine: ^a

After the reaction was complete, the 2-phenyl-benzimidazole was isolated through the column chromatography, yield 0.874 g (90%). The yield of H_2 was 86%.

2.3 Characterization of in situ generated dearomatic Ru(II) species

by the reaction of 1a and KOBu^t.

1a (12.3 mg, 0.02 mmol), KOBu^t (2.2mg, 0.02 mmol) and 0.6 mL DMSO-D₆ were added into a NMR tube under N₂ atmosphere. After the solution was stirred at room temperature (20 °C) for 2 h, the ¹H NMR spectrum was recorded, which shows **1a** is remaining as the dominant Ru(II) complex. Upon the solution was heated at 80 °C for 2 h, the ¹H NMR spectrum shows a singlet at 4.47 ppm and a doublet at -14.21 ppm, indicating the corresponding dearomatic Ru(II) hydride species formed in about 30% yield.^{1, 2} Only one singlet with the integration of nine protons appears at 3.37 ppm assigned to the *tert*-butyl of free ⁻OBu^t and *tert*-butanol, indicating the ⁻OBu^t is not coordinated to the Ru(II) center.

Figure 1S. ¹H NMR spectrum of the '=CHP' of the dearomatic Ru(II) hydride species.

Figure 2S. ¹H NMR spectrum of the 'Ru-H' of the Ru(II) hydride species:

A new signal appears at -14.21 ppm as a doublet.

2.3 NMR Spectra for all the intermediates and compounds

Figure 3S. ¹H NMR spectrum of compound **b**.

Figure 4S. $^{13}C{^{1}H}$ NMR spectrum of compound **b**.

Figure 5S.¹H NMR spectrum of **c**.

Figure 6S. ${}^{13}C{}^{1}H$ NMR spectrum of **c**.

Figure 7S.¹H NMR spectrum of d.

Figure 8S. ${}^{13}C{}^{1}H$ NMR spectrum of **d**.

Figure 9S. ${}^{31}P{}^{1}H$ NMR spectrum of **d**.

Figure 10S.¹H NMR spectrum of 1a.

Figure 11S. ${}^{13}C{}^{1}H$ NMR spectrum of 1a.

Figure 12S. ³¹P{¹H} NMR spectrum of 1a.

Figure 13S.¹H NMR spectrum of 1b.

Figure 14S. ${}^{13}C{}^{1}H$ NMR spectrum of 1b.

Figure 15S. ³¹P{¹H} NMR spectrum of 1b.

Figure 16S.¹H NMR spectrum of h.

Figure 17S. ${}^{13}C{}^{1}H$ NMR spectrum of **h**.

Figure 18S.¹H NMR spectrum of i.

Figure 19S. ${}^{13}C{}^{1}H$ NMR spectrum of i.

Figure 20S.¹H NMR spectrum of j.

Figure 21S. ${}^{13}C{}^{1}H$ NMR spectrum of j.

Figure 22S.¹H NMR spectrum of **k**.

Figure 24S.¹H NMR spectrum of l.

Figure 25S. ${}^{13}C{}^{1}H$ NMR spectrum of l.

Figure 26S.¹H NMR spectrum of **m**.

Figure 27S. ${}^{13}C{}^{1}H$ NMR spectrum of **m**.

Figure 28S.¹H NMR spectrum of 2.

Figure 29S. ${}^{13}C{}^{1}H$ NMR spectrum of 2.

Figure 30S. ${}^{31}P{}^{1}H$ NMR spectrum of **2**.

2.4 Characterization of benzimidazole derivatives:

2-phenyl-1*H***-benzo**[*d*]**imidazole**:

¹H NMR (300 MHz, DMSO-D₆, 296 K): δ (ppm): 11.68 (brs, 1H), 8.11 - 8.26 (m, 2H), 7.31 - 7.48 (m, 3H), 7.23 - 7.38 (m, 2H), 7.04 - 7.22 (m, 2H).
¹³C NMR (75.5 MHz, DMSO-D₆, 296 K): δ (ppm): 155.9, 132.4, 130.2, 127.6, 124.0, 122.6, 118.0, 109.1, 104.1.

5-Methyl-2-phenyl-1*H*-benzo[*d*]imidazole:

¹H NMR (300 MHz, DMSO-D₆, 296 K): δ (ppm): 12.78 (brs, 1H), 8.15 (d, 2H, J = 6.9 Hz), 7.50 - 7.35 (m, 5H), 7.07-6.99 (m, 1H), 2.44 (s, 3H).
¹³C NMR (75.5 MHz, DMSO-D₆, 296 K): δ (ppm): 152.03, 137.80, 132.80, 130.30,

130.03, 129.07, 128.98, 127.80, 127.05, 127.03, 124.30, 112.06, 112.00, 23.50.

5-Chloro-2-phenyl-benzo[d]imidazole:

¹H NMR (300 MHz, DMSO-D₆, 296 K): δ (ppm): 13.10 (brs, 1H), 8.17 (d, *J* = 8.0 Hz, 2H), 7.60-7.50 (m, 5H), 7.26-7.21 (m, 1H).

¹³**C NMR** (75.5MHz, DMSO-D₆, 296 K): δ (ppm): 153.10, 137.90, 130.31, 130.30, 129.70, 129.65, 129.18, 129.01, 126.20, 126.00, 122.52, 118.00, 112.5.

2-(3-Methylphenyl)-1*H*-benzo[*d*]imidazole:

¹**H NMR** (300 MHz, DMSO-D₆, 296 K): δ (ppm): 12.87 (brs, 1H), 8.03 (s, 1H), 7.97 (d, *J* = 7.7 Hz, 1H), 7.66 (d, *J* = 7.1 Hz, 1H), 7.52 (d, *J* = 7.1 Hz, 1H), 7.43 (t, *J* = 7.4 Hz, 1H), 7.30 (d, *J* = 7.4 Hz, 1H), 7.13-7.25 (m, 2H), 2.41 (s, 3H).

¹³C NMR(75.5 MHz, DMSO-D₆, 296 K): δ (ppm): 20.9, 111.1, 118.7, 121.5, 122.3, 123.4, 126.9, 128.7, 129.9, 130.3, 134.8, 138.0, 143.7, 151.2.

2-(3-(Trifluoromethyl)phenyl)-1*H*-benzo[*d*]imidazole:

¹**H NMR** (300 MHz, DMSO-D₆, 296 K): δ (ppm):13.12 (brs, 1H), 8.51 (s, 1H), 8.46 (d, *J*= 7.6 Hz, 1H), 7.77 - 7.85 (m, 2H), 7.69 (d, *J*= 7.2 Hz, 1H), 7.56 (d, *J*= 7.6 Hz, 1H), 7.19 - 7.26 (m, 2H).

¹³**C NMR** (75.5 MHz, DMSO-D₆, 296 K): δ (ppm): 111.4, 119.3, 122.2, 123.1, 123.6, 126.0, 129.4, 130.0, 130.7, 131.1, 131.4, 135.2, 150.3.

$$\mathbb{N}_{N}$$

2-(4-methoxyphenyl)-1*H*-benzo[*d*]imidazole:

¹**HNMR** (300 MHz, DMSO-D₆, 296 K): δ (ppm): 11.73 (brs, 1H), 8.05 - 8.13 (m, 2H), 7.57 - 7.65 (m, 1H), 7.33 - 7.42 (m, 1H), 7.07 - 7.14 (m, 2H), 6.98 - 7.05 (m, 2H), 3.83 (s, 3H).

¹³**C NMR** (75.5 MHz, DMSO-D₆, 296 K): δ (ppm): 161.3, 151.8, 128.0, 123.7, 121.9, 121.4, 119.2, 114.1, 110.4, 54.8, 29.6.

2-Cyclohexyl-1H-benzo[d]imidazole

¹**HNMR** (300 MHz, DMSO-D₆, 296 K): δ (ppm): 12.08 (brs, 1H), 7.46–7.48 (m, 2H), 7.09 - 7.11 (m, 2H), 2.84 (t, *J* = 10.8 Hz, 1H), 2.01-2.05 (m, 2H), 1.56– 1.81 (m, 5H), 1.23–1.44 (m, 3H).

¹³**C NMR** (75.5 MHz, DMSO-D₆, 296K): δ (ppm): 25.7, 25.8, 31.7, 38.1, 111.2, 118.6, 121.2, 121.8, 134.6, 143.5, 159.3.

2-pentyl-1*H*-benzo[*d*]imidazole:

¹**H NMR** (300 MHz, DMSO-D₆, 296 K): δ (ppm): 10.62 (brs, 1H), 7.55 (d, *J* = 8.5 Hz, 1H), 7.53 (d, *J* = 9.0 Hz, 1H), 7.22-7.19 (m, 2H), 2.93 (t, 2H), 1.89-1.82 (m, 2H, CH2), 1.37-1.28 (m, 4H), 0.85 (t, 3H).

¹³**C NMR** (75.5 MHz, DMSO-D₆, 296 K): δ (ppm): 155.32, 140.68, 140.68, 122.21, 122.20, 119.68, 119.65, 31.50, 29.37, 28.00, 22.36, 13.90.

2-butyl-1H-benzo[d]imidazole

¹**HNMR** (300 MHz, DMSO-D₆, 296 K): δ (ppm): 11.73 (brs, 1H), 7.45–7.48 (m, 2H), 7.09 - 7.11 (m, 2H), 2.81 (t, *J* = 7.5 Hz, 2H), 1.70–1.71 (m, 2H), 1.30– 1.39 (m, 2H), 0.87 - 0.92 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (75.5 MHz, DMSO-D₆, 296 K): δ (ppm):155.62, 138.59, 122.07, 114.58, 30.43, 29.06, 22.41, 13.67.

References:

- 1. Montag, M.; Zhang, J.; Milstein, D. J. Am. Chem. Soc. 2012, 134, 10325-10328.
- Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 2005, 127, 10840-10841.