Synthesis and redox reactions of bis(verdazyl)palladium

complexes

Corey A. Sanz, Zach R. McKay, Shaun W.C. MacLean, Brian O. Patrick, and Robin G. Hicks

Supporting Information

Contents:

Crystallographic data
¹ H NMR spectra of 5
COSY spectrum of 5
¹³ C NMR spectra of 5
¹ H NMR spectra of 7
¹³ C NMR spectrum of 7 S10
Electronic Spectra of 3 and 4
Electronic Spectra of 5, 6, and 7
EPR spectra of 3 , 4 , and 6 S13
EPR parameters
Initial xyz coordinates for computational studies

	4	5	6	7
Empirical Formula	$C_{28}H_{42}B_2F_8N_{10}O_3PdS$	$C_{26}H_{36}N_{10}O_2Pd$	C ₂₆ H ₃₆ ClN ₁₀ O ₂ Pd	$C_{13}H_{20}Cl_2N_5OPd_{0.5}$
Formula Weight	878.79	627.05	662.50	386.44
a (Å)	9.2988(4)	9.7686(5)	18.4316(5)	14.3982(19)
b (Å)	22.7666(9)	10.5532(5)	8.8810(2)	8.6271(12)
c (Å)	18.2185(7)	14.0846(7)	18.9892(5)	14.4349(19)
a (deg)	90	77.023(2)	90	90
β (deg)	92.149(3)	77.476(2)	108.3960(10)	107.688(3)
γ (deg)	90	77.674(2)	90	90
$V(Å^3)$	3854.2(3)	1360.35(12)	2949.52(13)	1708.3(4)
Ζ	4	2	4	4
space group	P2 ₁ /n	P-1	P2 ₁ /n	P2 ₁ /c
<i>T</i> (K)	90	100	90	90
λ (Å)	1.54178	0.71073	0.71073	0.71073
D _{calcd} (g cm ⁻³)	1.514	1.531	1.492	1.503
μ (mm ⁻¹)	5.129	0.727	0.762	0.896
R [all data] ^{<i>a</i>}	0.0998	0.0398	0.0422	0.0288
$R_{\rm w}$ [all data] ^b	0.1904	0.0611	0.0642	0.0584
CCDC#	1415460	1415461	1415462	1415463

Table S1. Crystallographic data for 4, 5, 6, and 7

^a $R = \sum |F_{obs} - F_{calc}| / \sum |F_{obs}|$. ^b $R_w = [\sum (|w||F_{obs} - F_{calc}|)^2 / \sum |wF_{obs}^2|]^{1/2}$.

Figure S6 ¹H NMR of 7 (DMSO-d₆, 300 MHz, 298 K)

Figure S8. ¹H NMR of **7** (CD₃CN, 500 MHz, 233 K)

Figure S9. ¹³C NMR of **7** (DMSO-d₆, 75.5 MHz, 298 K)

Figure S10. Electronic spectra of **3** (black dotted line) and **4** (black solid line) in dichloromethane

Wavelength (nm)

Figure S12. EPR spectra of **3** (red line), **4** (black line), and **6** (blue line) in dichloromethane. The bold lines represent the experimental spectra and the thin lines represent simulated spectra.

Table S2. EPR Parameters

Compound	3	4	6
Frequency (GHz)	9.8458	9.8438	9.8528
g	2.0047	2.0046	2.0049
$a(N)^{a}(G)$	5.7	5.8	5.4
$a(N)^{a}(G)$	6.1	6.1	6.6
<i>a</i> (H) ^b (G)	1.5	1.5	1.4

a) Two equivalent ¹⁴N nuclei b) C<u>H</u> of isopropyl groups (two equivalent ¹H nuclei)

Table S3. Initial coordinates for computational study of **5**

C	3 497601	-0 568662	9 299248
c	5 000665	1 015107	0 261214
C	5.902005	-1.013107	0.301314
С	4.696071	1.343547	10.193960
H	3.922522	1.298791	10.824607
С	5.915422	0.779943	10.920778
Н	5.777648	-0.174133	11.097451
н	6 038892	1 254714	11 768755
11	0.000000	0.000104	10 201212
н	0./1180/	0.896184	10.301313
С	4.907285	2.803632	9.831969
H	5.629213	2.876600	9.174037
Н	5.145638	3.308558	10.636858
н	4.080498	3.168478	9.450933
C	3 219534	-3 021622	9 335988
	0.200055	0.740767	0.010700
н	2.309855	-2./40/6/	9.642/34
С	3.850179	-3.865373	10.438709
H	4.713255	-4.211748	10.131692
Н	3.257061	-4.613865	10.657119
Н	3.984329	-3.312811	11.236575
C	3 056277	-3 819887	8 052001
ц ц	2 629056	-3 250650	7 370936
11	2.020000	-2.229029	1.3/0030
н	2.49/129	-4.606604	8.224486
H	3.936599	-4.108365	7.732827
С	7.390170	-1.132443	7.949887
С	9.131838	-0.044507	6.856620
н	9.443297	0.673128	6.317281
C	10 026407	-1 020388	7 268723
	10 047670	1.020300	7 0/00120
н	10.94/6/9	-0.949798	7.048016
C	9.564302	-2.099340	8.006076
H	10.160529	-2.787187	8.277164
С	8.223461	-2.161641	8.341323
Н	7.882111	-2.900127	8.832307
Ν	4.011654	-1.805351	9.086241
N	5 381636	-2 052456	8 853378
N	5 461299	0 213271	9 167496
IN I	4 220417	0.2132/1	0.107400
IN	4.33841/	0.533541	8.981361
Ν	7.834683	-0.091505	7.204564
0	2.374494	-0.369563	9.744173
Pd	6.411413	1.285042	6.753561
С	9.325224	3.138745	4.207874
С	6.840160	3,585270	5.145808
Ċ	8 126754	1 226536	3 313162
ц ц	0.120701	1 271202	2 692514
п а	0.900303	1.2/1292	2.002314
C	6.90/403	1./90140	2.586344
H	7.045177	2.744216	2.409671
H	6.783933	1.315369	1.738367
Н	6.110958	1.673899	3.145809
С	7.915540	-0.233549	3.675153
н	7.193612	-0.306517	4.333085
ц.	7 677187	-0 738475	2 870263
11	0 740207	0.730475	2.07020J
п	0./4232/	-0.596595	4.030109
C	9.603291	5.591/05	4.1/1134
H	10.512970	5.310850	3.864388
С	8.972646	6.435456	3.068413
Н	8.109570	6.781831	3.375430
Н	9.565764	7.183948	2.850003
н	8 838496	5 882894	2 270547
C	0.766540	6 200070	E / EE1 01
	9./00040	0.3099/0	J.4JJIZI
Н	10.194/69	5.829/42	6.136285
Н	10.325696	7.176687	5.282635
Н	8.886226	6.678448	5.774295
С	5.432655	3.702526	5.557235
С	3.690987	2.614590	6.650502
н	3.379528	1.896955	7,189841
 C	2 796/19	3 500/71	6 238300
	2.120410 1 07511/	J.JJU4/1 2 E10000	0.230399 6 AE0106
п	1.0/3140	3.319882	0.4391U6
C	3.258523	4.669423	5.501046
T T			
Н	2.662296	5.357270	5.229958

Н	4.940714	5.470210	4.674815
Ν	8.811171	4.375434	4.420881
Ν	7.441189	4.622539	4.653744
Ν	7.361537	2.356812	5.339635
Ν	8.484408	2.036542	4.525561
Ν	4.988142	2.661588	6.302558
0	10.448331	2.939646	3.762949

Table S4. Initial coordinates for computational study of ${\bf 6}$

Pd	10.57860000	3.79950000	5.94890000
C1	10.39110000	5.03760000	4.00050000
0	12 13120000	2 21 920000	10 72520000
0	12.13120000	2.21020000	10.72320000
0	9.32620000	6.96350000	10.94120000
N	9.95860000	2.65100000	10.18780000
Ν	8,91320000	2.32950000	9.27500000
N	10 55690000	2 62560000	7 57550000
11	11 60400000	2.02500000	7.57550000
N	11.60490000	2.48800000	8.52490000
N	8.71890000	2.99750000	5.82080000
N	11.43530000	6.27800000	10.41040000
N	12.34720000	5.81340000	9.50490000
N	10 66070000	5 97660000	7 81310000
11	10.00070000	5.57000000	7.01510000
IN	9.80860000	6.46810000	8.76580000
N	12.48210000	4.50670000	6.20530000
С	11.28050000	2.42100000	9.87160000
С	9.30090000	2,43960000	8.04500000
C	12 678/0000	1 61280000	7 98050000
	12.7200000	1.01200000	7.00030000
н	12.72680000	1.80200000	1.00030000
C	12.31680000	0.14560000	8.11620000
H	12.29070000	-0.09770000	9.06530000
Н	12.98910000	-0.39960000	7.65800000
н	11 43700000	-0 01240000	7 71390000
	14 05250000	1 02240000	9 5400000
0	14.05250000	1.93340000	0.54990000
Н	14.18310000	2.90500000	8.56250000
Н	14.74170000	1.51870000	7.99130000
Н	14.11750000	1.58350000	9.46350000
C	9 53280000	2 57190000	11 59460000
	10 21440000	2 92490000	12 15010000
п	10.31440000	2.03400000	12.13910000
С	9.15420000	1.16/00000	11.97870000
H	8.32330000	0.91560000	11.52300000
Н	9.02160000	1.11720000	12.94830000
Н	9.87010000	0.55150000	11.71580000
	9 12160000	3 57100000	11 96250000
	0.71770000	3.37190000	11 500200000
н	8./1//0000	4.46630000	11.589/0000
H	8.21320000	3.57550000	12.81860000
H	7.62640000	3.31970000	11.35190000
С	8.29510000	2.42010000	6.96540000
С	7.89200000	3.04620000	4.76450000
	9 10660000	2 44410000	2 05600000
п 2	6.1100000	3.44410000	3.93090000
C	6.01190000	2.53370000	4.82080000
H	6.04710000	2.56930000	4.05780000
С	6.15800000	1.96710000	5.99990000
H	5.27440000	1.62610000	6.05970000
С	7.00830000	1,90590000	7.08910000
	6 71000000	1 51070000	7 00670000
п -	0./1090000	1.318/0000	7.90070000
C	10.12/20000	6.58/90000	10.10260000
С	11.87210000	5.68300000	8.26670000
С	8.45570000	6.84370000	8.29860000
Н	8.08840000	7.52580000	8.93190000
C	8 52430000	7 47340000	6 92120000
	0 12050000	0 00710000	6 0400000
п	9.13930000	0.23/10000	0.94080000
Н	7.63250000	7.77890000	6.65620000
H	8.84700000	6.81080000	6.27420000
С	7.53980000	5.63140000	8.33320000
Н	7.81090000	4,99730000	7.63820000
н	6 61550000	5 91650000	8 17330000
11	7 (0110000	5.91030000	0.01100000
п	/.60110000	5.200/0000	9.21120000
C	⊥⊥.94490000	6.48310000	11.78200000

Н	11.24880000	6.97600000	12.30320000
С	12.19380000	5.17230000	12.46000000
Н	11.34800000	4.68740000	12.55370000
Н	12.57910000	5.33130000	13.34650000
Н	12.81660000	4.64030000	11.92300000
С	13.24150000	7.35880000	11.74830000
Н	13.92510000	6.91120000	11.20590000
Н	13.57790000	7.48140000	12.66000000
Н	13.03490000	8.23270000	11.35550000
С	12.87870000	5.24780000	7.26010000
С	13.40410000	4.15630000	5.28080000
Н	13.12940000	3.64030000	4.53170000
С	14.72920000	4.52310000	5.38690000
Н	15.35450000	4.25580000	4.72450000
С	15.13880000	5.28420000	6.46480000
Н	16.04690000	5.54970000	6.55520000
С	14.19560000	5.65190000	7.41310000
Н	14.45070000	6.17670000	8.16250000