Electronic Supplementary Information (ESI \dagger)

$\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] @\left\{\mathrm{Cd}_{6} \mathrm{Cl}_{4}(\text { nico })_{12}\left[\mathrm{Hg}(\mathrm{Tab})_{2}(\mu-\mathrm{Cl})\right]_{2}\right\}$: a heterometallic host-guest icosidodecahedron cage via hierarchical assembly

Xiao-Yan Tang, ${ }^{a b}$ Hong Yu, ${ }^{a *}$ Bin-Bin Gao ${ }^{a}$ and Jian-Ping Lang ${ }^{a *}$
${ }^{a}$ College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
${ }^{b}$ Department of Chemistry and Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, Jiangsu, China

Table of contents

Experimental section S3
Materials and methods S3
Preparation of $\left[\mathrm{Hg}(\mathrm{Tab})_{2}(\text { nico })\right]_{2}\left(\mathrm{PF}_{6}\right)_{2}(2)$ S3
Preparation of $\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] @\left\{\mathrm{Cd}_{6} \mathrm{Cl}_{4}(\text { nico })_{12}\left[\mathrm{Hg}(\mathrm{Tab})_{2}(\mu-\mathrm{Cl})\right]_{2}\right\}$ (3). S3
Preparation of $\left[\mathrm{Hg}(\mathrm{Tab})_{2}\right]\left[\mathrm{CdCl}_{4}\right]$ (4) S3
Single crystal X-ray determinations* S3
Table S1 Summary of crystallographic data and structure refinement parameters for $2 \cdot 3 \mathrm{MeCN} \cdot 2 \mathrm{MeOH}, 3 \cdot 10 \mathrm{DMF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $4 \cdot \mathrm{MeOH} \cdot$ S4
Table S2 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 2-4. S5
Table S3 The hydrogen bonding parameters $\left(\AA,{ }^{\circ}\right)$ between the coordinated water in $\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and carboxylate oxygen atom in 3 S9
References S9

Experimental Section

Materials and methods. $\left[\mathrm{Hg}(\mathrm{Tab})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ was prepared according to the literature method. ${ }^{\text {S1 }}$ Other chemicals and reagents were obtained from commercial sources and used as received. All solvents were pre-dried over activated molecular sieves and refluxed over appropriate drying agents under argon. IR spectra were recorded on a Varian 1000 FT-IR spectrometer as KBr disks (4000-400 cm^{-1}). Elemental analyses for C, H, and N were performed on a Carlo-Erba CHNO-S microanalyzer.

Preparation of $\left[\mathbf{H g}(\mathbf{T a b})_{\mathbf{2}}(\mathbf{n i c o})\right]_{\mathbf{2}}\left(\mathbf{P F}_{\mathbf{6}}\right)_{\mathbf{2}} \mathbf{(2)} . \mathrm{Et}_{3} \mathrm{~N}$ was added to a solution of nicotinic acid ($\left.0.25 \mathrm{~g}, 2 \mathrm{mmol}\right)$ in $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ until its pH reaches 7.0. The resulting colourless solution was transferred to a solution containing $\mathbf{1}$ $(0.83 \mathrm{~g}, 1 \mathrm{mmol})$ in $\mathrm{MeCN} / \mathrm{MeOH}(15 \mathrm{~mL}, 3: 2, \mathrm{v} / v)$ and the colourless mixture briefly stirred for 0.5 h to form a homogeneous solution. Upon filtration, diethyl ether (40 mL) was carefully layered onto the filtrate at ambient temperature for two weeks to give colorless long needle crystals of $2 \cdot 3 \mathrm{MeCN} \cdot 2 \mathrm{MeOH}$. These crystals were collected by filtration, washed by $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo. Yield: $0.63 \mathrm{~g}(78 \%$ based on Hg$)$. Anal. Calcd. for $2 \cdot 3 \mathrm{MeCN} \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{C}_{54} \mathrm{H}_{73} \mathrm{~N}_{9} \mathrm{~F}_{12} \mathrm{P}_{2} \mathrm{~S}_{4} \mathrm{Hg}_{2} \mathrm{O}_{6}\right)$: C 36.77, H 4.17, N 7.15\%; found: C 36.12, H 4.34, N 7.51\%. IR (KBr, cm^{-1}): 3405 (br), 1615 (s), 1568 (w), 1491 (s), 1375 (s), 1321 (w), 1190 (w), 1127 (m), 1011 (w), 958 (w), 839 (s), 761 (w), 746 (w), 670 (w), 558 (s) cm^{-1}.

Preparation of $\left[\mathbf{C d}\left(\mathbf{H}_{2} \mathbf{O}\right)_{6}\right] @\left\{\mathbf{C d}_{6} \mathbf{C l}_{4}(\text { nico })_{12}\left[\mathbf{H g}(\mathbf{T a b})_{2}(\mu-\mathbf{C l})\right]_{2}\right\}$ (3). A solution of $\mathrm{CdCl}_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}(0.23 \mathrm{~g}, 1$ mmol) in $\mathrm{MeOH}(3 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added to a solution of $2(0.92 \mathrm{~g}, 1 \mathrm{mmol})$ in DMF (1 mL) and $\mathrm{CH}_{3} \mathrm{OH}(6 \mathrm{~mL})$ while stirring. The colourless mixture was stirred for 0.5 h to give a homogeneous solution. Upon filtration, diethyl ether $(40 \mathrm{~mL})$ was allowed to diffuse into the filtrate at ambient temperature for two weeks to give forming colourless blocks of $3 \cdot 10 \mathrm{DMF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$. These crystals were collected by filtration, washed by $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo. Yield: $0.29 \mathrm{~g}\left(45 \%\right.$ based on $\left.\mathrm{CdCl}_{2}\right)$. Anal. Calcd. for $3 \cdot 10 \mathrm{DMF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ $\left(\mathrm{C}_{138} \mathrm{H}_{188} \mathrm{~N}_{26} \mathrm{Hg}_{2} \mathrm{Cd}_{7} \mathrm{Cl}_{6} \mathrm{O}_{43} \mathrm{~S}_{4}\right)$: C 37.43, H 4.28, N 8.22%; found: C 37.04, H 4.52, N 8.48%. IR ($\left.\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3441 (br), 1616 (s), 1566 (m), 1487(m), 1406 (s), 1199 (w), 1124 (w), 1093 (w), 1031 (w), 949 (w), 848 (w), 756 (m), 704(w), 621 (w), $552(\mathrm{w}) \mathrm{cm}^{-1}$.

Preparation of $\left[\mathbf{H g}(\mathbf{T a b})_{2}\right]\left[\mathrm{CdCl}_{4}\right]$ (4). A solution of $\mathrm{CdCl}_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}(0.68 \mathrm{~g}, 3 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added to a solution of $2(0.92 \mathrm{~g}, 1 \mathrm{mmol})$ in DMF $(1 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{OH}(6 \mathrm{~mL})$ while stirring. The
colourless mixture was stirred for 0.5 h to give a homogeneous solution. Upon filtration, diethyl ether (40 mL) was allowed to diffuse into the filtrate at ambient temperature for two weeks to give forming colourless blocks of $4 \cdot \mathrm{MeOH}$. The colourless prism crystals were collected by filtration, washed by $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo. Yield: $0.70 \mathrm{~g}(85 \%$ based on Hg$)$. Anal. Calcd. for $4 \cdot \mathrm{MeOH}\left(\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{CdCl}_{4} \mathrm{HgN}_{2} \mathrm{OS}_{2}\right)$: C 27.78 , H 3.69, N 3.41%; found: C 27.53, H 3.47, N 3.17%. IR (KBr, cm ${ }^{-1}$): 3420 (br), 3085 (w), 3024 (w), 2963 (w), 1585 (w), 1488 (s), 1409 (m), 1262(w), 1127 (m), 1085 (m), 1015 (m), 959 (w), 806 (m), 746 (w), 551 (m) cm^{-1}.

Single crystal X-ray structure determinations. All measurements were made on a Rigaku Mercury CCD X-ray diffractometer by using graphite-monochromated Mo $\mathrm{K} \alpha(\lambda=0.71073 \AA$). Single crystals of $2 \cdot 3 \mathrm{MeCN} \cdot 2 \mathrm{MeOH}, \mathbf{3} \cdot 10 \mathrm{DMF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathbf{4} \cdot \mathrm{MeOH}$ suitable for single crystal X-ray analysis were obtained directly from the above preparations. These crystals were mounted on glass fibers and cooled at 193 K for data collection. The collected data were reduced by using the program CrystalClear (Rigaku and MSc, Ver. 1.3, 2001), and an absorption correction (multi-scan) was applied. ${ }^{[\mathrm{S} 2]}$

The crystal structures of $\mathbf{2} \cdot 3 \mathrm{MeCN} \cdot 2 \mathrm{MeOH}, \mathbf{3} \cdot 10 \mathrm{DMF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathbf{4} \cdot \mathrm{MeOH}$ were solved by direct methods and refined on F^{2} by full-matrixleast-squares using anisotropic displacement parameters for all non-hydrogen atoms. ${ }^{\text {S3 }}$ All hydrogen atoms were placed in geometrically idealized positions ($\mathrm{C}-\mathrm{H}=0.98 \AA$ for methyl groups; $\mathrm{C}-\mathrm{H}=0.95$ \AA for phenyl groups) and constrained to ride on their parent atoms with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for phenyl groups and $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl groups. Some important Relevant collection and refinement parameters for $2 \cdot 3 \mathrm{MeCN} \cdot 2 \mathrm{MeOH}, \mathbf{3} \cdot 10 \mathrm{DMF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathbf{4} \cdot \mathrm{MeOH}$ are summarized in Table S 1 . CCDC number of 1558989 for $\mathbf{2} \cdot \mathbf{3 M e C N} \cdot 2 \mathrm{MeOH}, \quad 1558990$ for $\mathbf{3} \cdot 10 \mathrm{DMF} \cdot \mathbf{3} \mathrm{H}_{2} \mathrm{O}, \quad 1558991$ for $\mathbf{4} \cdot \mathrm{MeOH}$ contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via http://www.ccdc.cam.ac.uk/data request/cif.

Table S1 Summary of crystallographic data and structure refinement parameters for $2 \cdot 3 \mathrm{MeCN} \cdot 2 \mathrm{MeOH}$, 3•10DMF $2 \mathrm{H}_{2} \mathrm{O}$ and $4 \cdot \mathrm{MeOH}$

Compound	$\mathbf{2} \cdot 3 \mathrm{MeCN} \cdot 2 \mathrm{MeOH}$	$\mathbf{3} \cdot 10 \mathrm{DMF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	$\mathbf{4} \cdot \mathrm{MeOH}$
Molecular Formula	$\mathrm{C}_{56} \mathrm{H}_{77} \mathrm{~F}_{12} \mathrm{Hg}_{2} \mathrm{~N}_{9} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~S}_{4}$	$\mathrm{C}_{138} \mathrm{H}_{188} \mathrm{Cd}_{7} \mathrm{Cl}_{6} \mathrm{Hg}_{2} \mathrm{~N}_{26} \mathrm{O}_{43} \mathrm{~S}_{4}$	$\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{CdCl}_{4} \mathrm{HgN}_{2} \mathrm{OS}_{2}$
Formula weight	1791.63	4428.14	821.37

Crystal system	triclinic	triclinic	monoclinic
Space group	P_{1}	$P^{\overline{1}}$	$P 2{ }_{1} / \mathrm{c}$
Size	$0.50 \times 0.21 \times 0.12$	$0.30 \times 0.18 \times 0.12$	$0.40 \times 0.14 \times 0.12$
$a(\AA)$	8.4455(17)	16.080(2)	12.542(3)
$b(\AA)$	10.670(2)	16.7412(13)	8.8863(18)
$c(\AA)$	19.8160(15)	20.135(3)	24.244(5)
$\alpha\left({ }^{\circ}\right)$	93.09(2)	101.243(2)	90
$\beta\left({ }^{\circ}\right)$	99.53(3)	108.605(3)	93.86(3)
$\gamma\left({ }^{\circ}\right)$	94.56(2)	111.309(2)	90
$V\left(\AA^{3}\right)$	1751.4(5)	4479.3(10)	2695.9(10)
Z	1	1	4
T/K	193(2)	193(2)	193(2)
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-5}\right)$	1.699	1.642	2.024
$\lambda(\mathrm{Mo}-\mathrm{K} \alpha)(\AA)$	0.71073	0.71073	0.71073
$\mu\left(\mathrm{cm}^{-1}\right)$	46.27	27.33	70.43
$2 \lambda_{\text {max }}\left({ }^{\circ}\right.$)	50.7	50.7	50.7
Total reflections	17096	43855	24838
Unique reflections	$6363\left(R_{\text {int }}=0.0314\right)$	$16267\left(R_{\text {int }}=0.0469\right)$	$4752\left(R_{\text {int }}=0.0601\right)$
No. observations	$5323(I>2.00 \sigma(I))$	$12200(I>2.00 \sigma(I))$	$4249(I>2.00 \sigma(I))$
No. parameters	430	1043	275
$R^{\text {a }}$	0.0338	0.0513	0.0427
$w R^{\text {b }}$	0.0711	0.1161	0.0811
$\mathrm{GOF}^{\text {c }}$	1.034	1.020	1.193

${ }^{\mathrm{a}} R=\Sigma| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right| / \Sigma\right| \mathrm{F}_{\mathrm{o}}| | \cdot{ }^{\mathrm{b}} w R=\left\{\Sigma w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2} / \Sigma w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)^{2}\right\}^{1 / 2} \cdot{ }^{\mathrm{c}} \mathrm{GOF}=\left\{\Sigma\left[w\left(\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right) /(n-p)\right\}^{1 / 2}\right.$, where $n=$ number of reflections and $p=$ total numbers of
parameters refined.

Table S2 Selected bond distances (\AA) and angles (${ }^{\circ}$) for 2-4

Compound 2

| $\operatorname{Hg}(1)-\mathrm{S}(1)$ | $\operatorname{Hg}(1)-\mathrm{S}(2)$ | $2.3621(13)$ |
| :--- | :--- | :--- | :--- |

$\mathrm{Hg}(1) \mathrm{-N}(3)$	2.480(4)	$\mathrm{S}(1)-\mathrm{Hg}(1)-\mathrm{S}(2)$	166.69(4)
$\mathrm{S}(1)-\mathrm{Hg}(1)-\mathrm{N}(3)$	103.66(10)	$\mathrm{S}(2)-\mathrm{Hg}(1)-\mathrm{N}(3)$	89.28(10)
Compound 3			
$\mathrm{Hg}(1)-\mathrm{S}(1)$	2.337(2)	$\mathrm{Hg}(1)-\mathrm{S}(2)$	2.3399(19)
$\mathrm{Hg}(1)-\mathrm{Cl}(1)$	$2.9113(15)$	$\mathrm{Cd}(1)-\mathrm{N}(4)$	2.298(5)
Cd(1)-N(8)\#1	2.319(6)	$\mathrm{Cd}(1)-\mathrm{O}(7)$	2.422(4)
$\mathrm{Cd}(1)-\mathrm{O}(1)$	2.424(4)	$\mathrm{Cd}(1)-\mathrm{O}(8)$	2.507(4)
$\mathrm{Cd}(1)-\mathrm{O}(2)$	2.530(4)	$\mathrm{Cd}(1)-\mathrm{Cl}(1)$	2.5905(15)
Cd(2)-N(6)\#1	$2.339(5)$	$\mathrm{Cd}(2)-\mathrm{N}(3)$	2.340 (5)
$\mathrm{Cd}(2)-\mathrm{O}(6)$	2.419(5)	$\mathrm{Cd}(2)-\mathrm{O}(9) \# 1$	2.451(5)
$\mathrm{Cd}(2)-\mathrm{O}(10) \# 1$	2.488(4)	$\mathrm{Cd}(2)-\mathrm{Cl}(2)$	2.5509(16)
$\mathrm{Cd}(2)-\mathrm{O}(5)$	2.566(4)	Cd(3)-N(7)	2.320 (5)
$\mathrm{Cd}(3)-\mathrm{N}(5)$	2.343 (5)	$\mathrm{Cd}(3)-\mathrm{O}(4)$	2.406(4)
$\mathrm{Cd}(3)-\mathrm{O}(3)$	2.523(5)	$\mathrm{Cd}(3)-\mathrm{O}(11)$	2.545(4)
$\mathrm{Cd}(3)-\mathrm{O}(12)$	2.428(4)	$\mathrm{Cd}(3)-\mathrm{Cl}(3)$	$2.5160(15)$
$\mathrm{Cd}(4)-\mathrm{O}(2 \mathrm{~W})$	2.224(4)	$\mathrm{Cd}(4)-\mathrm{O}(2 \mathrm{~W}) \# 2$	2.224(4)
$\mathrm{Cd}(4)-\mathrm{O}(1 \mathrm{~W}) \# 2$	2.200(4)	$\mathrm{Cd}(4)-\mathrm{O}(1 \mathrm{~W})$	2.200(4)
$\mathrm{Cd}(4)-\mathrm{O}(3 \mathrm{~W})$	2.283(4)	$\mathrm{Cd}(4)-\mathrm{O}(3 \mathrm{~W}) \# 2$	2.283(4)
$\mathrm{S}(1)-\mathrm{Hg}(1)-\mathrm{S}(2)$	173.37(6)	$\mathrm{S}(1)-\mathrm{Hg}(1)-\mathrm{Cl}(1)$	84.83(6)
$\mathrm{S}(2)-\mathrm{Hg}(1)-\mathrm{Cl}(1)$	101.64(5)	$\mathrm{O}(8)-\mathrm{Cd}(1)-\mathrm{O}(2)$	81.37(14)
$\mathrm{O}(7)-\mathrm{Cd}(1)-\mathrm{O}(8)$	53.59(13)	$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(8)$	132.93(14)
$\mathrm{N}(4)-\mathrm{Cd}(1)-\mathrm{O}(2)$	88.72(17)	$\mathrm{N}(8) \# 1-\mathrm{Cd}(1)-\mathrm{O}(2)$	81.53(18)
$\mathrm{O}(7)-\mathrm{Cd}(1)-\mathrm{O}(2)$	134.98(14)	$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(2)$	52.26(14)
$\mathrm{N}(4)-\mathrm{Cd}(1)-\mathrm{O}(1)$	86.05(18)	$\mathrm{N}(8) \# 1-\mathrm{Cd}(1)-\mathrm{O}(1)$	95.50(17)
$\mathrm{N}(4)-\mathrm{Cd}(1)-\mathrm{N}(8) \# 1$	166.2(2)	$\mathrm{N}(8) \# 1-\mathrm{Cd}(1)-\mathrm{O}(7)$	91.97(18)

$\mathrm{N}(4)-\mathrm{Cd}(1)-\mathrm{O}(7)$	88.05(18)	$\mathrm{N}(4)-\mathrm{Cd}(1)-\mathrm{O}(8)$	85.15(17)
$\mathrm{N}(4)-\mathrm{Cd}(1)-\mathrm{Cl}(1)$	100.03(14)	$\mathrm{N}(8) \# 1-\mathrm{Cd}(1)-\mathrm{Cl}(1)$	93.72(16)
$\mathrm{O}(7)-\mathrm{Cd}(1)-\mathrm{Cl}(1)$	89.86(11)	$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{Cl}(1)$	83.97(11)
$\mathrm{O}(8)-\mathrm{Cd}(1)-\mathrm{Cl}(1)$	143.10(10)	$\mathrm{O}(2)-\mathrm{Cd}(1)-\mathrm{Cl}(1)$	134.82(11)
$\mathrm{O}(7)-\mathrm{Cd}(1)-\mathrm{O}(1)$	170.59(15)	$\mathrm{N}(8) \# 1-\mathrm{Cd}(1)-\mathrm{O}(8)$	83.81(17)
$\mathrm{O}(6)-\mathrm{Cd}(2)-\mathrm{Cl}(2)$	87.69(11)	$\mathrm{O}(6)-\mathrm{Cd}(2)-\mathrm{O}(5)$	52.95(14)
$\mathrm{N}(6) \# 1-\mathrm{Cd}(2)-\mathrm{Cl}(2)$	99.27(14)	$\mathrm{N}(3)-\mathrm{Cd}(2)-\mathrm{Cl}(2)$	96.82(13)
$\mathrm{N}(6) \# 1-\mathrm{Cd}(2)-\mathrm{O}(9) \# 1$	85.77(19)	$\mathrm{N}(3)-\mathrm{Cd}(2)-\mathrm{O}(9) \# 1$	85.47(17)
$\mathrm{N}(6) \# 1-\mathrm{Cd}(2)-\mathrm{N}(3)$	163.24(18)	$\mathrm{N}(3)-\mathrm{Cd}(2)-\mathrm{O}(6)$	86.72(19)
$\mathrm{N}(6) \# 1-\mathrm{Cd}(2)-\mathrm{O}(6)$	89.2(2)	$\mathrm{N}(6) \# 1-\mathrm{Cd}(2)-\mathrm{O}(10) \# 1$	91.59(19)
$\mathrm{O}(6)-\mathrm{Cd}(2)-\mathrm{O}(9) \# 1$	134.39(16)	$\mathrm{N}(3)-\mathrm{Cd}(2)-\mathrm{O}(10) \# 1$	94.24(18)
$\mathrm{O}(6)-\mathrm{Cd}(2)-\mathrm{O}(10) \# 1$	173.56(15)	$\mathrm{O}(9) \# 1-\mathrm{Cd}(2)-\mathrm{Cl}(2)$	137.86(12)
$\mathrm{O}(9) \# 1-\mathrm{Cd}(2)-\mathrm{O}(10) \# 1$	52.05(15)	$\mathrm{O}(10) \# 1-\mathrm{Cd}(2)-\mathrm{Cl}(2)$	85.87(11)
$\mathrm{N}(6) \# 1-\mathrm{Cd}(2)-\mathrm{O}(5)$	84.04(17)	$\mathrm{N}(3)-\mathrm{Cd}(2)-\mathrm{O}(5)$	80.54(16)
$\mathrm{O}(9) \# 1-\mathrm{Cd}(2)-\mathrm{O}(5)$	81.44(15)	$\mathrm{O}(10) \# 1-\mathrm{Cd}(2)-\mathrm{O}(5)$	133.49(14)
$\mathrm{Cl}(2)-\mathrm{Cd}(2)-\mathrm{O}(5)$	140.58(10)	$\mathrm{N}(5)-\mathrm{Cd}(3)-\mathrm{Cl}(3)$	98.97(12)
$\mathrm{N}(7)-\mathrm{Cd}(3)-\mathrm{N}(5)$	161.99(16)	$\mathrm{N}(7)-\mathrm{Cd}(3)-\mathrm{O}(4)$	87.33(17)
$\mathrm{N}(5)-\mathrm{Cd}(3)-\mathrm{O}(4)$	86.11(17)	$\mathrm{N}(7)-\mathrm{Cd}(3)-\mathrm{O}(12)$	96.35(17)
$\mathrm{N}(5)-\mathrm{Cd}(3)-\mathrm{O}(12)$	91.88(16)	$\mathrm{N}(7)-\mathrm{Cd}(3)-\mathrm{Cl}(3)$	97.63(12)
$\mathrm{O}(4)-\mathrm{Cd}(3)-\mathrm{O}(12)$	173.51(15)	$\mathrm{O}(4)-\mathrm{Cd}(3)-\mathrm{Cl}(3)$	88.70(12)
$\mathrm{O}(4)-\mathrm{Cd}(3)-\mathrm{O}(3)$	51.84(16)	$\mathrm{N}(5)-\mathrm{Cd}(3)-\mathrm{O}(3)$	82.71(16)
$\mathrm{N}(7)-\mathrm{Cd}(3)-\mathrm{O}(3)$	80.05(16)	$\mathrm{O}(12)-\mathrm{Cd}(3)-\mathrm{Cl}(3)$	85.51(11)
$\mathrm{O}(12)-\mathrm{Cd}(3)-\mathrm{O}(11)$	52.49(15)	$\mathrm{N}(7)-\mathrm{Cd}(3)-\mathrm{O}(11)$	83.53(17)
$\mathrm{Cl}(3)-\mathrm{Cd}(3)-\mathrm{O}(11)$	137.63(11)	$\mathrm{N}(5)-\mathrm{Cd}(3)-\mathrm{O}(11)$	88.89(16)
$\mathrm{O}(3)-\mathrm{Cd}(3)-\mathrm{O}(11)$	81.69(16)	$\mathrm{O}(4)-\mathrm{Cd}(3)-\mathrm{O}(11)$	133.53(15)
$\mathrm{Cl}(3)-\mathrm{Cd}(3)-\mathrm{O}(3)$	140.46(13)	$\mathrm{O}(12)-\mathrm{Cd}(3)-\mathrm{O}(3)$	134.03(16)

$\mathrm{O}(3 \mathrm{~W})-\mathrm{Cd}(4)-\mathrm{O}(3 \mathrm{~W}) \# 2$	180.0	$\mathrm{O}(2 \mathrm{~W}) \# 2-\mathrm{Cd}(4)-\mathrm{O}(3 \mathrm{~W}) \# 2$	93.73(17)
$\mathrm{O}(2 \mathrm{~W})-\mathrm{Cd}(4)-\mathrm{O}(3 \mathrm{~W}) \# 2$	86.27(17)	$\mathrm{O}(1 \mathrm{~W})-\mathrm{Cd}(4)-\mathrm{O}(3 \mathrm{~W}) \# 2$	95.99(17)
$\mathrm{O}(1 \mathrm{~W}) \# 2-\mathrm{Cd}(4)-\mathrm{O}(3 \mathrm{~W}) \# 2$	84.01(17)	$\mathrm{O}(2 \mathrm{~W})-\mathrm{Cd}(4)-\mathrm{O}(3 \mathrm{~W})$	93.73(17)
$\mathrm{O}(2 \mathrm{~W}) \# 2-\mathrm{Cd}(4)-\mathrm{O}(3 \mathrm{~W})$	86.27(17)	$\mathrm{O}(1 \mathrm{~W}) \# 2-\mathrm{Cd}(4)-\mathrm{O}(2 \mathrm{~W})$	95.25(17)
$\mathrm{O}(1 \mathrm{~W})-\mathrm{Cd}(4)-\mathrm{O}(3 \mathrm{~W})$	84.01(17)	$\mathrm{O}(1 \mathrm{~W}) \# 2-\mathrm{Cd}(4)-\mathrm{O}(3 \mathrm{~W})$	95.99(17)
$\mathrm{O}(1 \mathrm{~W})-\mathrm{Cd}(4)-\mathrm{O}(2 \mathrm{~W}) \# 2$	95.25(17)	$\mathrm{O}(2 \mathrm{~W})-\mathrm{Cd}(4)-\mathrm{O}(2 \mathrm{~W}) \# 2$	180.0
$\mathrm{O}(1 \mathrm{~W})-\mathrm{Cd}(4)-\mathrm{O}(2 \mathrm{~W})$	84.75(17)	$\mathrm{O}(1 \mathrm{~W}) \# 2-\mathrm{Cd}(4)-\mathrm{O}(2 \mathrm{~W}) \# 2$	84.75(17)
$\mathrm{O}(1 \mathrm{~W}) \# 2-\mathrm{Cd}(4)-\mathrm{O}(1 \mathrm{~W})$	180.0		
Compound 4			
$\mathrm{Hg}(1)-\mathrm{S}(1)$	2.325(2)	$\mathrm{Hg}(1)-\mathrm{S}(2)$	2.327(2)
$\mathrm{Cd}(1)-\mathrm{Cl}(1)$	2.4426(19)	$\mathrm{Cd}(1)-\mathrm{Cl}(2)$	2.4644(19)
$\mathrm{Cd}(1)-\mathrm{Cl}(3)$	2.4644(19)	$\mathrm{Cd}(1)-\mathrm{Cl}(4)$	2.452(2)
$\mathrm{S}(1)-\mathrm{Hg}(1)-\mathrm{S}(2)$	171.58(6)	$\mathrm{Cl}(1)-\mathrm{Cd}(1)-\mathrm{Cl}(2)$	110.97(7)
$\mathrm{Cl}(1)-\mathrm{Cd}(1)-\mathrm{Cl}(3)$	114.15(6)	$\mathrm{Cl}(1)-\mathrm{Cd}(1)-\mathrm{Cl}(4)$	105.49(7)
$\mathrm{Cl}(2)-\mathrm{Cd}(1)-\mathrm{Cl}(3)$	105.37(7)	$\mathrm{Cl}(2)-\mathrm{Cd}(1)-\mathrm{Cl}(4)$	106.11(8)
$\mathrm{Cl}(3)-\mathrm{Cd}(1)-\mathrm{Cl}(4)$	114.54(8)		

Table S3 The hydrogen bonding parameters $\left(\AA,{ }^{\circ}\right)$ between the coordinated water in $\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and carboxylate oxygen atom in 3

D-H $\cdots \mathrm{A}$	D-H	$\mathrm{H} \cdots \mathrm{A}$	D $\cdots \mathrm{A}$	D-H \cdots A
O1W-H1X \cdots O5	0.96	2.04	2.717(6)	126.0
O1W-H1Y \cdots O2	0.96	1.91	2.728(7)	141.9
O2W-H2X \cdots O11	0.96	1.91	2.700(6)	137.9
O2W-H2Y $\cdots \mathrm{O} 8^{\text {i }}$	0.96	1.81	2.754(6)	165.7
O3W-H3X \cdots O	0.96	1.87	2.793(6)	159.3
O3W-H3Y \cdots O8	0.96	2.54	3.414(7)	150.7
O6W-H6X \cdots O16	0.83	1.96	2.317(6)	104.7
O6W-H6Y \cdots O16 ${ }^{\text {ii }}$	0.83	1.99	2.317(6)	102.4
O6W-H6Y \cdots N12 ${ }^{\text {ii }}$	0.83	2.51	3.311(7)	164.0

Symmetry codes: (i) $2-x, 2-y, 2-z$; (ii) $2-x, 2-y, 1-z$.

References

S1 J. X. Chen, W. H. Zhang, X. Y. Tang, Z. G. Ren, Y. Zhang and J. P. Lang, Inorg. Chem., 2006, 45, 2568-2580.

S2 G. M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detector Data; University of Göttingen, Germany 1996.

S3 G. Sheldrick, Acta Crystallogr., Sect. C, 2015, 71, 3-8.

