

## ELECTRONIC SUPPLEMENTARY INFORMATION

### Confined methanol within InOF-1: CO<sub>2</sub> capture enhancement

Elí Sánchez-González,<sup>†a</sup> Paulo G. M. Mileo,<sup>†b</sup> J. Raziel Álvarez,<sup>a</sup> Eduardo González-Zamora,<sup>c</sup>  
Guillaume Maurin<sup>\*,b</sup> and Ilich A. Ibarra<sup>\*,a</sup>

<sup>a</sup> *Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.*

*E-mail: argel@unam.mx*

<sup>b</sup> *Institut Charles Gerhardt Montpellier, UMR-5253, Université de Montpellier, CNRS, ENSCM, Place E. Bataillon, 34095 Montpellier cedex 05, France.*

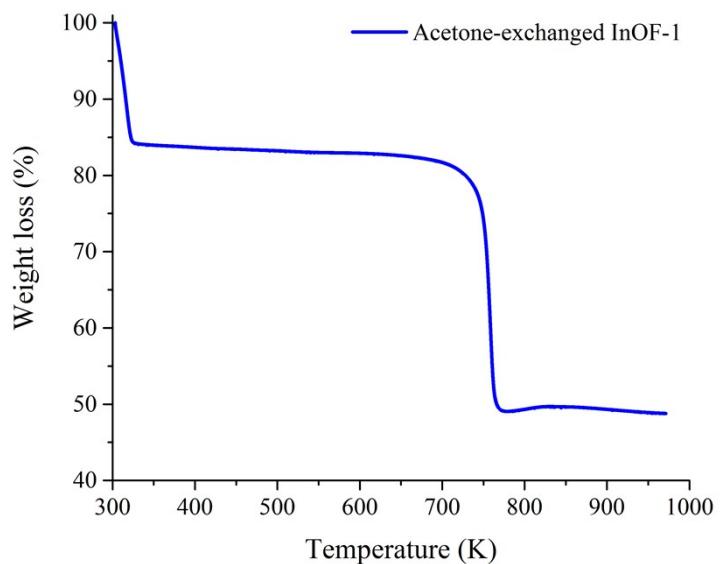
*E-mail: guillaume.maurin@univ-montp2.fr*

<sup>c</sup> *Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C. P. 09340, Ciudad de México, Mexico.*

## 1. Materials and measurements

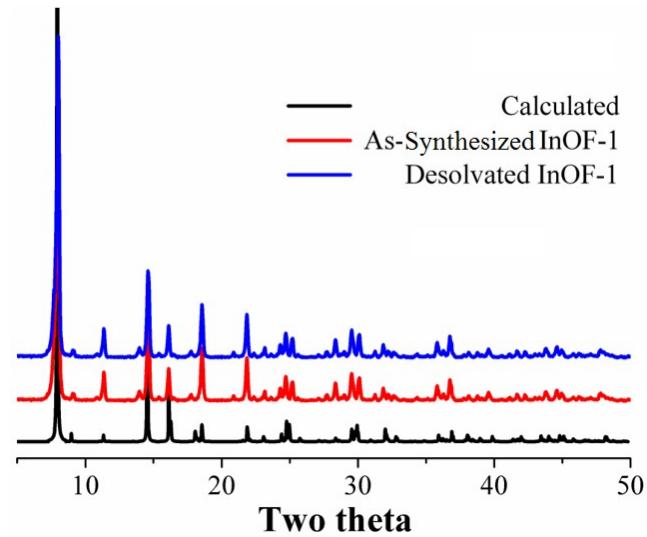
All reagents and solvents were used as received from commercial suppliers without further purification. Powder X-ray diffraction (PXRD) data were collected under ambient conditions on a Bruker AXD D8 Advance diffractometer operated at 160 W (40 kV, 40 mA) for Cu K $\alpha$ <sub>1</sub> ( $\lambda=1.5406\text{ \AA}$ ). Thermal gravimetric analysis (TGA) was performed under N<sub>2</sub> at a scan rate of 2 K min<sup>-1</sup> using a TA Instruments Q500 HR analyser.

### 1.1 Sample preparation:


**Acetone-exchanged InOF-1:** Samples of as-synthesized InOF-1 soaking for 4 days in acetone.

**Fully activated InOF-1:** Acetone-exchanged samples of InOF-1 activated at 453 K and 10<sup>-3</sup> bar or under a constant flow of N<sub>2</sub> (60 mL min<sup>-1</sup>) for 2 h.

**MeOH@InOF-1:** Pre-adsorption of MeOH (saturation). Samples acetone-exchanged InOF-1 were placed in a quartz cell inside a BELPREP activation module and activated at 453 K for 2 hours. After that time, these samples were cooled down to room temperature (under N<sub>2</sub>) and immediately immersed in methanol for 10 minutes. Then, the samples were recovered by filtration and kept in a desiccator for 8 hours. Later, this saturated samples with the MeOH were placed in a thermobalance (Q500 HR, from TA) and heated up from room temperature to 573 K (under N<sub>2</sub>) in order to desorb all the alcohol molecules (MeOH) inside the micropores of InOF-1. The maximum load of MeOH was: 23 wt% for MeOH. These results were in good agreement with the MeOH alcohol isotherm.


Once the maximum amount of MeOH was established for InOF-1, more saturated samples were prepared. Then, different activation conditions (heating ramps to reach maximum temperatures, from 313 to 453 K) were used in order to desorb (in a controlled way) the amounts of MeOH that we determined. Thus, when saturated samples of MeOH were heated from room temperature to 443 K, with a ramp of 10 K min<sup>-1</sup>, and immediately cooled down to 303 K (under N<sub>2</sub>), the residual amount of the MeOH was approximately 2 wt%. This procedure was repeated 8 times in order to ensure the reproducibility of the experiment.

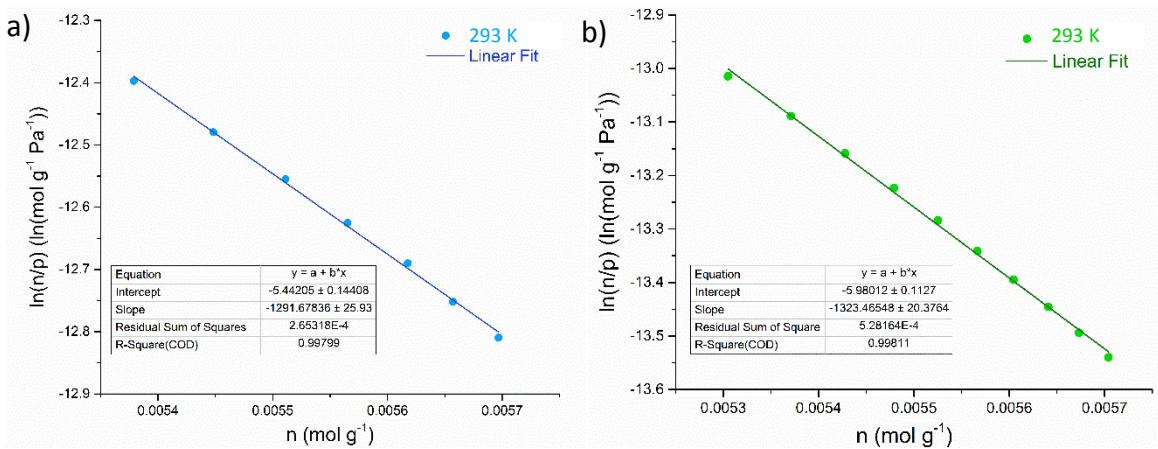
## 2. TGA plot



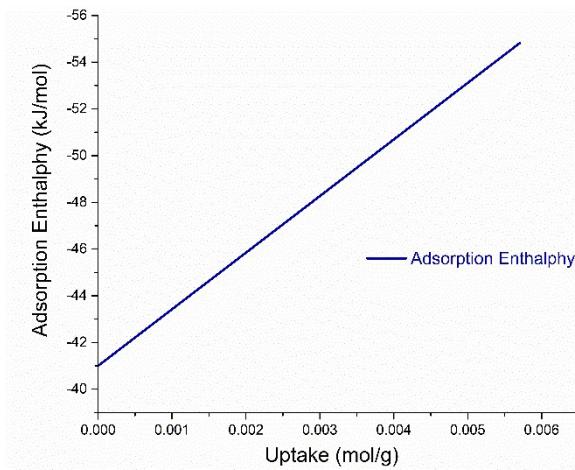
**Fig. S1:** TGA analysis of the acetone-exchanged InOF-1.

### 3. Powder X-ray diffraction patterns of InOF-1



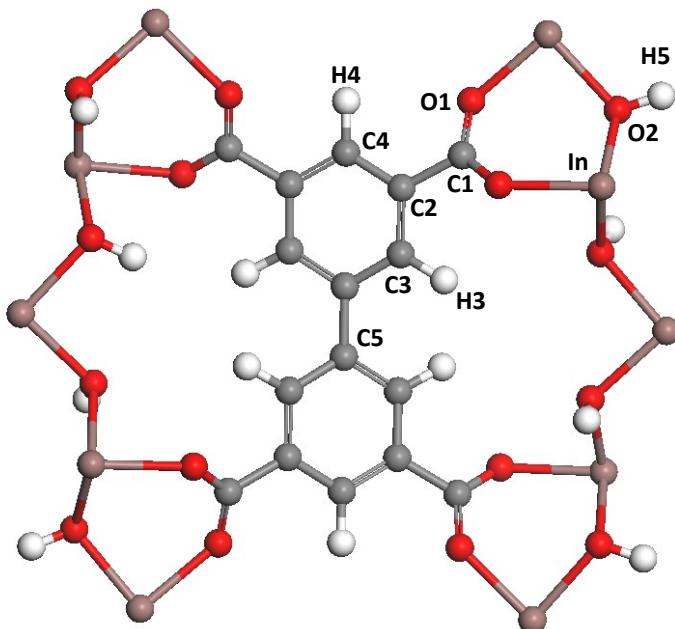

**Fig. S2:** PXRD patterns of calculated (black), as synthesised (red) and calcined (blue) InOF-1.

### 4. Derivation of the isosteric enthalpy of adsorption for MeOH


The enthalpy of adsorption was calculated from the analysis of methanol adsorption isotherms using the isosteric method,  $\mathcal{Q}_{st}$ , by fitting a virial-type equation to both 293 and 303 K methanol adsorption isotherms.<sup>1</sup> The following virial-type equation is used to fit both adsorption isotherms:<sup>2</sup>

$$\ln(n/p) = A_0 + A_1 n + A_2 n^2 \dots \quad (1)$$

where  $p$  is pressure,  $n$  is amount adsorbed and  $A_0, A_1$  etc. are virial coefficients.  $A_2$  and higher terms can be ignored. A plot of  $\ln(n/p)$  versus  $n$  should give a straight line at low surface coverage.<sup>1</sup>




The isoteric enthalpies of adsorption,  $\mathcal{Q}_{st}$ , as a function of methanol uptake, was determined by using the Clausius-Clapeyron equation<sup>2</sup> (Fig. S4). The positive slope is indicative of homogeneous interactions due to, possibly, cooperative methanol-methanol interactions (*via* hydrogen bonding) rising with pressure increase.<sup>3</sup>



## 5. Computational details

The InOF-1 framework was modeled using the crystal structure reported previously<sup>1</sup>. The InOF-1 crystallizes in the space group I4<sub>1</sub>22 and is composed by binuclear  $[\text{In}_2(\mu_2\text{-OH})]$  inorganic blocks bridged by BPTC<sup>4-</sup> ligands forming a 3-D framework with cylindrical channels with openings of 7.5 Å<sup>4,5</sup>. This structure was then geometry optimized at the Density Functional Theory (DFT) level maintaining its experimental unit cell parameters fixed. These calculations employed a PBE GGA functional<sup>6,7</sup> combined with the double numerical basis set containing polarization functions (DNP) on all atoms, as implemented in the Dmol<sup>6</sup> module<sup>8,9</sup>. The partial charges of each atom in the framework were calculated using the Mulliken charges (Table S1). The respective atom types are provided in Fig. S5.



**Fig. S5:** Representative cluster of the InOF-1 and its atom types.

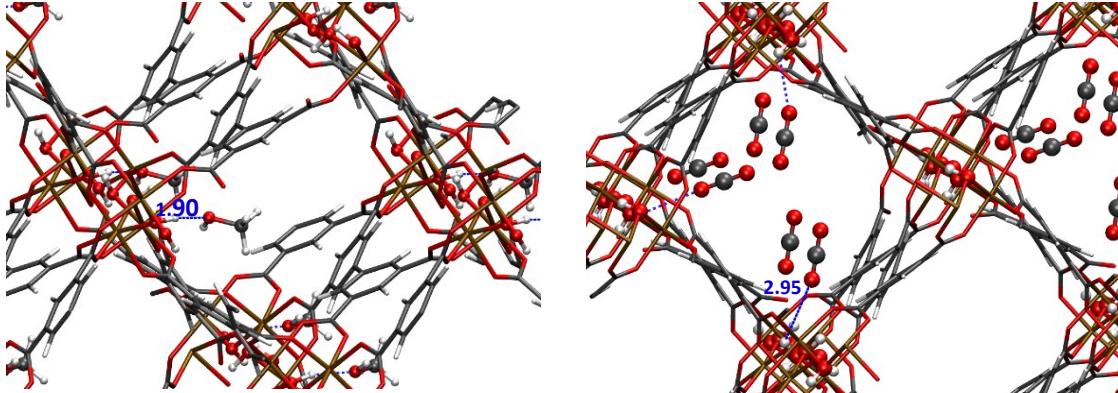
As mentioned in the main text, periodic Density Functional Theory calculations using the aforementioned specifications were performed to geometry optimize the  $\text{CO}_2@\text{InOF-1}$  and  $\text{MeOH}@\text{InOF-1}$  structures starting with the crystal structure of the empty InOF-1. We considered for both  $\text{CO}_2$  and  $\text{MeOH}$  the loading explored experimentally, *i.e.* 5.2 wt% and 2 wt% respectively.

Monte Carlo simulations in the NVT ensemble were further carried out at 303 K to predict the adsorption behavior of the  $\text{CO}_2$  and methanol in the InOF-1 framework. The simulation box was made of 8 conventional unit cells ( $2 \times 2 \times 2$ ) maintaining the atoms of the MOF framework fixed in their initial positions. Short-range dispersion forces described by

Lennard-Jones (LJ) potentials were truncated at a cut-off radius of 12 Å while the Ewald summation method was used to calculate the Coulombic contribution. For each state point, 2x10<sup>8</sup> Monte Carlo steps following 10<sup>7</sup> equilibration steps were used. The energy of interaction in the system were tracked by energy histograms.

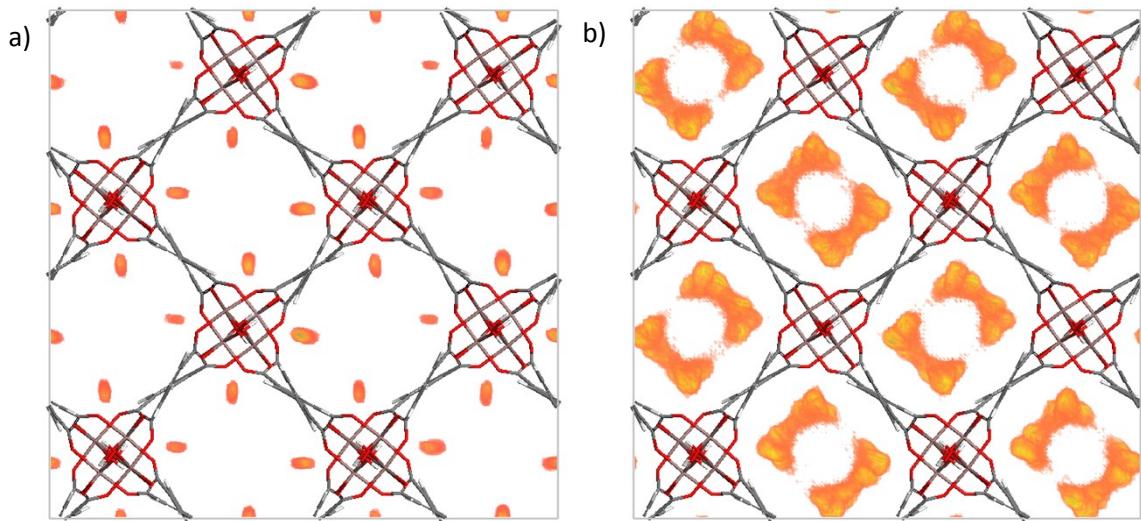
The same number of molecules experimentally observed at 1 bar and 303 K were modelled by NVT for the binary mixture CO<sub>2</sub>/CH<sub>3</sub>OH (5.4 / 2.0 wt%) as well as for the single component systems of CO<sub>2</sub> (5.2 wt.%) and CH<sub>3</sub>OH (2.0 wt%).

The interactions between the InOF-1 and the guest molecules were modeled using a van der Waals 6-12 LJ contribution and a Coulombic term. The LJ parameters for the atoms of the organic linker were taken from the generic force field DREIDING.<sup>10</sup> The In(III) ions are considered as not polarizable and their LJ contributions are immersed in those provided by the  $\mu_2$ -OH groups. The same methodology was already employed in the literature for several MOFs.<sup>11</sup>


**Table S1:** LJ parameters and atomic partial charges for the InOF-1 framework and the CO<sub>2</sub> and CH<sub>3</sub>OH molecules.

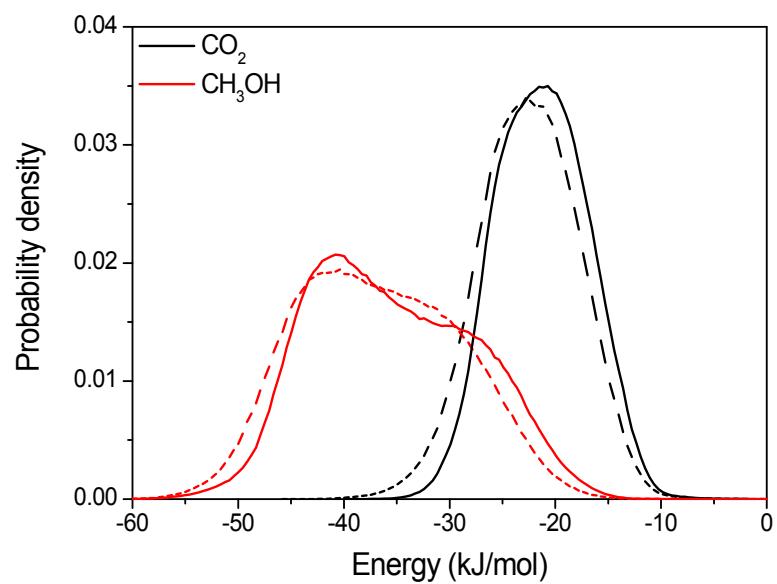
| Atom type        | $\sigma$ (Å) | $\epsilon$ (K) | Charge (e) |
|------------------|--------------|----------------|------------|
| Framework        |              |                |            |
| C1               | 3.473        | 47.856         | 0.5231     |
| C2               | 3.473        | 47.856         | 0.0041     |
| C3               | 3.473        | 47.856         | -0.1363    |
| C4               | 3.473        | 47.856         | -0.1088    |
| C5               | 3.473        | 47.856         | 0.0576     |
| O1               | 3.033        | 48.158         | -0.5625    |
| O2               | 3.118        | 92.123         | -0.8089    |
| H3               | 2.847        | 7.649          | 0.1362     |
| H4               | 2.846        | 7.649          | 0.1611     |
| H5               | 2.571        | 0.000          | 0.3136     |
| In               | 3.976        | 0.000          | 1.5812     |
| Methanol         |              |                |            |
| C <sub>CH3</sub> | 3.475        | 80.516         | -0.0930    |
| H <sub>CH3</sub> | 2.446        | 19.148         | 0.1000     |
| O <sub>OH</sub>  | 2.860        | 114.63         | -0.4320    |
| H <sub>OH</sub>  | -            | -              | 0.2250     |
| CO <sub>2</sub>  |              |                |            |
| O <sub>CO2</sub> | 3.033        | 80.507         | -0.3256    |
| C <sub>CO2</sub> | 2.757        | 28.129         | +0.6512    |

The  $\text{CO}_2$  molecules were described as a 3 site-model. Their mutual interactions were modeled by the EPM2 model,<sup>12</sup> where both the LJ and charge sites are centered in the oxygen and carbon atoms. The methanol molecules were described by a flexible all-atom model<sup>13</sup> optimized to capture its interactions with the extra-framework cations in zeolites.


## 6. Computational results

The optimization of the  $\text{MeOH}@\text{InOF-1}$  and  $\text{CO}_2@\text{InOF-1}$  frameworks at the DFT level revealed that both  $\text{MeOH}$  and  $\text{CO}_2$  interact preferentially with the  $\mu_2\text{-OH}$  groups of the solid. For the methanol molecules, this interaction involves an interacting distance of 1.90 Å where the hydroxyl groups of the  $\text{MeOH}$  act as acceptor for the hydrogen from the  $\mu_2\text{-OH}$  groups. Meanwhile, for the  $\text{CO}_2$  molecules this preferential interaction occurs between the oxygen of the  $\text{CO}_2$  molecules and the hydrogens of the  $\mu_2\text{-OH}$  groups at a much longer distance about 2.95 Å.




**Fig. S6:** DFT-optimized structures for the  $\text{MeOH}@\text{InOF-1}$  (a) and  $\text{CO}_2@\text{InOF-1}$  (b), showing the preferential adsorption of the guest towards the hydroxyl groups.

The stronger interaction between the  $\mu_2\text{-OH}$  groups and the methanol molecules can also be observed from the Monte Carlo simulations, observing, for instance, the much more localized center of mass (COM) distribution of the  $\text{MeOH}$  molecules at the vicinities of the hydroxyl groups of the InOF-1 compared to the much more scattered COM distribution of the  $\text{CO}_2$  molecules in the pores of the framework (Fig. S7).



**Fig. S7:** Center of mass distribution for the single-component MC NVT calculations of the MeOH (a) and CO<sub>2</sub> (b) adsorption in the InOF-1.

As seen in the energy histograms of the single-component and mixture MC calculations of CO<sub>2</sub> and MeOH, there is only a minor shift (from -21 kJ mol<sup>-1</sup> to -23 kJ mol<sup>-1</sup>) in the interacting energy involved in the CO<sub>2</sub> adsorption with the presence of 2 wt% of methanol. Therefore, as discussed in the main text, the enhancement of the adsorption of CO<sub>2</sub> in presence of methanol is rather associated with the reduction of the apparent porosity in the framework rather than an enhancement of the crossed interactions between the two guest molecules.



**Fig. S8:** Energy histograms from MC calculations of CO<sub>2</sub> (black plots) and MeOH (red plots) as single components (full lines) and in a mixture of 5.4 and 2.0 wt% respectively (dashed lines).

## References

1. I. A. Ibarra, S. Yang, X. Lin, A. J. Blake, P. J. Rizkallah, H. Nowell, D. R. Allan, N. R. Champness, P. Hubberstey and M. Schröder, *Chem. Commun.*, 2011, **47**, 8304.
2. M. P. Suh, H. J. Park, T. K. Prasad and D.-W. Lim, *Chem. Rev.*, 2012, **112**, 782.
3. A. J. Nuñez, M. S. Chang, I. A. Ibarra and S. M. Humphrey, *Inorg. Chem.*, 2014, **53**, 282.
4. J. Qian, F. Jiang, D. Yuan, M. Wu, S. Zhang, L. Zhang and M. Hong, *Chem. Commun.*, 2012, **48**, 9696.
5. R. A. Peralta, A. Campos-Reales-Pineda, H. Pfeiffer, J. R. Álvarez, J. A. Zárate, J. Balmaseda, E. González-Zamora, A. Martínez, D. Martínez-Otero, V. Jancik and I. A. Ibarra, *Chem. Commun.*, 2016, **52**, 10273–10276.
6. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868.
7. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1997, **78**, 1396.
8. B. Delley, *J. Chem. Phys. Addit. Inf. J. Chem. Phys. J. Homepage*, , DOI:10.1063/1.458452.
9. B. Delley, *J. Chem. Phys.*, 2000, **113**, 7756–7764.
- 10 S. L. Mayo, B. D. Olafson, W. a G. Iii, E. Eb and E. a E. T. El, *J. Phys. Chem.*, 1990, **101**, 8897–8909.
11. Q.Y. Yang, S. Vaesan, M. Vishnuvarthan, F. Ragon, C. Serre, A. Vimont, M. Daturi, G. De Weireld, G. Maurin, *J. Mater. Chem.*, 2012, **22**, 10210.
12. J. G. Harris and K. H. Yung, *J. Phys. Chem.*, 1995, **99**, 12021–12024.
13. D. F. Plant, G. Maurin and R. G. Bell, *J. Phys. Chem. B*, 2007, **111**, 2836–2844.